Intrinsic localized modes (ILMs) are investigated in an N-pendulum array subjected to vertical harmonic excitation. The pendula behave nonlinearly and are coupled with each other because they are connected by torsional, weak, linear springs. In the theoretical analysis, van der Pol's method is employed to determine the expressions for frequency response curves for the principal parametric resonance, considering the nonlinear restoring moment of the pendula. In the numerical results, frequency response curves for N = 2 and 3 are shown to examine the patterns of ILMs, and demonstrate the influences of the connecting spring constants and the imperfections of the pendula. Bifurcation sets are also calculated to show the excitation frequency range and the conditions for the occurrence of ILMs. Increasing the connecting spring constants results in the appearance of Hopf bifurcations. The numerical simulations reveal the occurrence of ILMs with amplitude modulated motions (AMMs), including chaotic motions. ILMs were observed in experiments, and the experimental data were compared with the theoretical results. The validity of the theoretical analysis was confirmed by the experimental data.

References

References
1.
Sievers
,
A. J.
, and
Takeno
,
S.
,
1988
, “
Intrinsic Localized Mode in Anharmonic Crystals
,”
Phys. Rev. Lett.
,
61
(
8
), pp.
970
973
.10.1103/PhysRevLett.61.970
2.
Flash
,
S.
, and
Willis
,
C. R.
,
1998
, “
Discrete Breathers
,”
Phys. Rep.
,
295
(
5
), pp.
181
264
.10.1016/S0370-1573(97)00068-9
3.
Campbell
,
D. K.
,
Flach
,
S.
, and
Kivshar
,
Y. S.
,
2004
, “
Localizing Energy Through Nonlinearity and Discreteness
,”
Phys. Today
,
57
(
1
), pp.
43
49
.10.1063/1.1650069
4.
Sato
,
M.
,
Hubbard
,
B. E.
,
Sievers
,
A. J.
,
Ilic
,
B.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
,
2003
, “
Observation of Locked Intrinsic Localized Vibrational Modes in a Micromechanical Oscillator Array
,”
Phys. Rev. Lett.
,
90
(
4
), p.
044102
.10.1103/PhysRevLett.90.044102
5.
Sato
,
M.
,
Hubbard
,
B. E.
,
English
,
L. G.
, and
Sievers
,
A. J.
,
2003
, “
Study of Intrinsic Localized Vibrational Modes in Micromechanical Oscillator Arrays
,”
Chaos
,
13
(
2
), pp.
702
715
.10.1063/1.1540771
6.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
,
2008
, “
Intrinsic Localized Modes in Microresonator Arrays and Their Relationship to Nonlinear Vibration Modes
,”
Nonlinear Dyn.
,
54
(
1–2
), pp.
13
29
.10.1007/s11071-007-9288-0
7.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
,
2010
, “
Localization in Microresonator Arrays: Influence of Natural Frequency Tuning
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011002
.10.1115/1.4000314
8.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization
,”
Nonlinear Dyn.
,
7
(
1
), pp.
85
104
.10.1007/BF00045127
9.
Emad
,
J.
,
Vakakis
,
A. F.
, and
Miller
,
N.
,
2000
, “
Experimental Nonlinear Localization in a Periodically Forced Repetitive System of Coupled Magnetoelastic Beams
,”
Physica D
,
137
(
1–2
), pp.
192
201
.10.1016/S0167-2789(99)00176-1
10.
Kimura
,
M.
, and
Hikihara
,
T.
,
2009
, “
Coupled Cantilever Array With Tunable On-Site Nonlinearity and Observation of Localized Oscillations
,”
Phys. Lett. A
,
373
(
14
), pp.
1257
1260
.10.1016/j.physleta.2009.02.005
11.
Ikeda
,
T.
,
Harata
,
Y.
, and
Nishimura
,
K.
,
2013
, “
Intrinsic Localized Modes of Harmonic Oscillations in Nonlinear Oscillator Arrays
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041007
.10.1115/1.4023866
12.
Ikeda
,
T.
,
Harata
,
Y.
, and
Nishimura
,
K.
,
2015
, “
Intrinsic Localized Modes of Harmonic Oscillations in Pendulum Arrays Subjected to Horizontal Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021007
.10.1115/1.4028474
13.
Stoker
,
J. J.
,
2005
,
Nonlinear Vibrations
,
Wiley
,
New York
.
14.
Brent
,
R. P.
,
1973
,
Algorithms for Minimization Without Derivatives
,
Prentice-Hall
,
Englewood Cliffs
, Chap. 4.
15.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
,
16
(
3
), pp.
285
317
.10.1016/0167-2789(85)90011-9
16.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
,
1997
,
AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont)
,
Concordia University
,
Montréal, QC
.
You do not currently have access to this content.