The aim of this study is to offer a new analytical method for the stability testing of neutral type linear time-invariant (LTI) time-delayed fractional-order systems with commensurate orders and multiple commensurate delays. It is evident from the literature that the stability assessment of this class of dynamics remains unsolved yet and this is the first attempt to take up this challenging problem. The method starts with the determination of all possible purely imaginary characteristic roots for any positive time delay. To achieve this, the Rekasius transformation is used for the transcendental terms in the characteristic equation. An explicit analytical expression in terms of the system parameters which reveals the stability regions (pockets) in the domain of time delay has been presented. The number of unstable roots in each delay interval is calculated with the definition of root tendency (RT) on the boundary of each interval. Two example case studies are also provided, which are not possible to analyze using any other methodology known to the authors.

References

References
1.
Pakzad
,
M. A.
, and
Pakzad
,
S.
,
2012
, “
Stability Map of Fractional Order Time-Delay Systems
,”
WSEAS Trans. Syst.
,
10
(
11
), pp.
541
550
.
2.
Khader
,
M. M.
,
2013
, “
The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041018
.10.1115/1.4024852
3.
Suh
,
Y. S.
,
Ro
,
Y. S.
,
Kang
,
H. J.
, and
Lee
,
H. H.
,
2004
, “
Necessary and Sufficient Stability Condition of Discrete State Delay Systems
,”
Int. J. Control Autom. Syst.
,
2
(
4
), pp.
501
508
.
4.
Pakzad
,
M. A.
,
2012
, “
Kalman Filter Design for Time Delay Systems
,”
WSEAS Trans. Syst.
,
11
(
10
), pp.
551
560
.
5.
Leung
,
A. Y. T.
,
Yang
,
H. X.
, and
Zhu
,
P.
,
2014
, “
Periodic Bifurcation of Duffing-van der Pol Oscillators Having Fractional Derivatives and Time Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
4
), pp.
1142
1155
.10.1016/j.cnsns.2013.08.020
6.
Gu
,
K.
, and
Zheng
,
X.
,
2014
, “
Stability Crossing Set for Systems With Three Scalar Delay Channels
,”
Int. J. Dyn. Control
(submitted)
10.1007/s40435-014-0088-3
7.
Pakzad
,
M. A.
, and
Moaveni
,
B.
,
2013
, “
Delay-Dependent State Estimation for Time Delay Systems
,”
WSEAS Trans. Syst.
,
8
(
1
), pp.
1
10
.
8.
Gu
,
K.
,
2013
, “
Complete Quadratic Lyapunov-Krasovskii Functional: Limitations, Computational Efficiency, and Convergence
,”
Advances in Analysis and Control of Time-Delayed Dynamical Systems
, New Jersey World Scientific, pp.
1
19
.10.1142/8878
9.
Fioravanti
,
A. R.
,
Bonnet
,
C.
,
Özbay
,
H.
, and
Niculescu
,
S. I.
,
2012
, “
A Numerical Method for Stability Windows and Unstable Root-Locus Calculation for Linear Fractional Time-Delay Systems
,”
Automatica
,
48
(
11
), pp.
2824
2830
.10.1016/j.automatica.2012.04.009
10.
Olgac
,
N.
, and
Sipahi
,
R.
, “
An Exact Method for the Stability Analysis of Time Delayed Lineartime-Invariant (LTI) Systems
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
793
797
.10.1109/TAC.2002.1000275
11.
Pakzad
,
M. A.
,
Pakzad
,
S.
, and
Nekoui
,
M. A.
,
2013
, “
Stability Analysis of Multiple Time Delayed Fractional Order Systems
,”
American Control Conference
,
Washington, DC
, pp.
170
175
.
12.
Sipahi
,
R.
, and
Delice
,
I. I.
, “
Extraction of 3D Stability Switching Hypersurfaces of a Time Delay System With Multiple Fixed Delays
,”
Automatica
,
45
(
6
), pp.
1449
1454
.10.1016/j.automatica.2009.01.017
13.
Suh
,
Y. S.
, and
Lee
,
M. H.
,
1999
, “
Stability of State Delay Systems Based on a Lyapunov Functional
,”
Proceedings of IEEE International Symposium on Industrial Electronics
,
Bled, Slovenia
, Vol.
3
, pp.
1093
1098
.
14.
Pakzad
,
S.
, and
Pakzad
,
M. A.
,
2011
, “
Stability Condition for Discrete Systems With Multiple State Delays
,”
WSEAS Trans. Syst. Control
,
6
(
11
), pp.
417
426
.
15.
Thowsen
,
A.
,
1981
, “
The Routh-Hurwitz Method for Stability Determination of Linear Differential-Difference Systems
,”
Int. J. Control
,
33
(
5
), pp.
991
995
.10.1080/00207178108922971
16.
Walton
,
K. E.
,
,
Marshal
,
J. E.
,
1987
Direct Method for TDS Stability Analysis
,”
IEE Proc., Part D
,
134
, pp.
101
107
.10.1049/ip-d.1987.0018
17.
Öztürk
,
N.
, and
Uraz
,
A.
,
1985
, “
An Analysis Stability Test for a Certain Class of Distributed Parameter Systems With Delays
,”
IEEE Trans. Circuits Syst.
,
34
(
4
), pp.
393
396
.10.1109/TCS.1985.1085704
18.
Jury
,
E. I.
, and
Zeheb
,
E.
,
1986
, “
On a Stability Test for a Class of Distributed System With Delays
,”
IEEE Trans. Circuits Syst.
,
37
(
10
), pp.
1027
1028
.10.1109/TCS.1986.1085839
19.
Buslowicz
,
M.
,
2008
, “
Stability of Linear Continuous Time Fractional Order Systems With Delays of the Retarded Type
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
56
(
4
), pp.
319
324
.
20.
Hwang
,
C.
, and
Cheng
,
Y. C.
,
2006
, “
A Numerical Algorithm for Stability Testing of Fractional Delay Systems
,”
Automatica
,
42
(
5
), pp.
825
831
.10.1016/j.automatica.2006.01.008
21.
Shi
,
M.
, and
Wang
,
Z. H.
,
2011
, “
An Effective Analytical Criterion for Stability Testing of Fractional-Delay Systems
,”
Automatica
,
47
(
9
), pp.
2001
2005
.10.1016/j.automatica.2011.05.018
22.
Tenreiro Machado
,
J. A.
,
2011
, “
Root Locus of Fractional Linear Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
10
), pp.
3855
3862
.10.1016/j.cnsns.2011.01.020
23.
Pakzad
,
M. A.
, and
Nekoui
,
M. A.
,
2013
, “
Direct Method for Stability Analysis of Fractional Delay Systems
,”
Int. J. Comput. Commun. Control
,
7
(
6
), pp.
863
868
.
24.
Pakzad
,
M. A.
, and
Nekoui
,
M. A.
,
2014
, “
Stability Map of Multiple Time Delayed Fractional Order Systems
,”
Int. J. Control Autom. Syst.
,
12
(
1
), pp.
37
43
.10.1007/s12555-012-0481-7
25.
Pakzad
,
S.
,
Pakzad
,
M. A.
, and
Nekoui
,
M. A.
, “
Stability Map of Fractional Delay Systems in the Parametric Space of Delays and Coefficient
,”
American Control Conference
,
Washington, DC
, pp.
176
181
.
26.
Pakzad
,
M. A.
,
Nekoui
,
M. A.
, and
Pakzad
,
S.
, “
Stability Analysis of Time-Delayed Linear Fractional-Order Systems
,”
Int. J. Control Autom. Syst.
,
11
(
3
), pp.
519
525
.10.1007/s12555-012-0164-4
27.
Hua
,
Ch.
,
Liu
,
D.
, and
Guan
,
X. P.
,
2014
, “
Necessary and Sufficient Stability Criteria for a Class of Fractional-Order Delayed Systems
,”
IEEE Trans. Circuits Syst.
,
61
(
1
), pp.
59
63
.10.1109/TCSII.2013.2291137
28.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
29.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Chaotic Attractors in Incommensurate Fractional Order Systems
,”
Phys. D
,
237
(
20
), pp.
2628
2637
.10.1016/j.physd.2008.03.037
30.
Bonnet
,
C.
, and
Partington
,
J. R.
,
2002
, “
Analysis of Fractional Delay Systems of Retarded and Neutral Type
,”
Automatica
,
38
(
7
), pp.
1133
1138
.10.1016/S0005-1098(01)00306-5
31.
Rekasius
,
Z. V.
,
1980
, “
A Stability Test for Systems With Delays
,”
Proceedings of the Joint Automation Control Conference
,
San Francisco, CA
.
32.
Collins
,
G. E.
,
1971
, “
The Calculation of Multivariate Polynomial Resultants
,”
J. Assoc. Comput. Mach.
,
18
(
4
), pp.
515
532
.10.1145/321662.321666
You do not currently have access to this content.