The numerical stability and the convergence behavior of cosimulation methods are analyzed in this manuscript. We investigate explicit and implicit coupling schemes with different approximation orders and discuss three decomposition techniques, namely, force/force-, force/displacement-, and displacement/displacement-decomposition. Here, we only consider cosimulation methods where the coupling is realized by applied forces/torques, i.e., the case that the coupling between the subsystems is described by constitutive laws. Solver coupling with algebraic constraint equations is not investigated. For the stability analysis, a test model has to be defined. Following the stability definition for numerical time integration schemes (Dahlquist's stability theory), a linear test model is used. The cosimulation test model applied here is a two-mass oscillator, which may be interpreted as two Dahlquist equations coupled by a linear spring/damper system. Discretizing the test model with a cosimulation method, recurrence equations can be derived, which describe the time discrete cosimulation solution. The stability of the recurrence equations system represents the numerical stability of the cosimulation approach and can easily be determined by an eigenvalue analysis.

References

References
1.
Datar
,
M.
,
Stanciulescu
,
I.
, and
Negrut
,
D.
,
2011
, “
A Co-Simulation Framework for Full Vehicle Analysis
,”
Proceedings of the SAE 2011 World Congress
, Detroit, MI, Apr. 12–14, SAE Technical Paper No. 2011-01-0516.
2.
Datar
,
M.
,
Stanciulescu
,
I.
, and
Negrut
,
D.
,
2012
, “
A Co-Simulation Environment for High-Fidelity Virtual Prototyping of Vehicle Systems
,”
Int. J. Veh. Syst. Modell. Test.
,
7
(
1
), pp.
54
72
.10.1504/IJVSMT.2012.045308
3.
Liao
,
Y. G.
, and
Du
,
H. I.
,
2001
, “
Co-Simulation of Multi-Body-Based Vehicle Dynamics and an Electric Power Steering Control System
,”
Proc. Inst. Mech. Eng. K
,
215
(
3
), pp.
141
151
.10.1243/1464419011544420
4.
Negrut
,
N.
,
Melanz
,
D.
,
Mazhar
,
H.
,
Lamb
,
D.
, and
Jayakumar
,
P.
,
2013
, “
Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
6
(
1
), pp.
369
381
.10.4271/2013-01-1191
5.
Carstens
,
V.
,
Kemme
,
R.
, and
Schmitt
,
S.
,
2003
, “
Coupled Simulation of Flow-Structure Interaction in Turbomachinery
,”
Aerospace Sci. Technol.
,
7
(
4
), pp.
298
306
.10.1016/S1270-9638(03)00016-6
6.
Dörfel
,
M. R.
, and
Simeon
,
B.
,
2010
, “
Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme
,”
Numerical Mathematics and Advanced Applications
,
Springer
,
Berlin, Heidelberg
, pp.
307
315
.
7.
Meynen
,
S.
,
Mayer
,
J.
, and
Schäfer
,
M.
,
2000
, “
Coupling Algorithms for the Numerical Simulation of Fluid-Structure-Interaction Problems
,”
ECCOMAS 2000: European Congress on Computational Methods in Applied Sciences and Engineering
, Barcelona, Spain, Sept. 11–14.
8.
Schäfer
,
M.
,
Yigit
,
S.
, and
Heck
,
M.
,
2006
, “
Implicit Partitioned Fluid-Structure Interaction Coupling
,”
ASME
Paper No. PVP2006-ICPVT11-93184.10.1115/PVP2006-ICPVT-11-93184
9.
Ambrosio
,
J.
,
Pombo
,
J.
,
Rauter
,
F.
, and
Pereira
,
M.
,
2009
, “
A Memory Based Communication in the Co-Simulation of Multibody and Finite Element Codes for Pantograph-Catenary Interaction Simulation
,”
Multibody Dynamics: Computational Methods and Applications
,
C. L.
Bottasso
, ed.,
Springer
, pp.
231
252
.
10.
Ambrosio
,
J.
,
Pombo
,
J.
,
Pereira
,
M.
,
Antunes
,
P.
, and
Mosca
,
A.
,
2012
, “
A Computational Procedure for the Dynamic Analysis of the Catenary-Pantograph Interaction in High-Speed Trains
,”
J. Theor. Appl. Mech.
,
50
(
3
), pp.
681
699
.
11.
Busch
,
M.
, and
Schweizer
,
B.
,
2012
, “
Coupled Simulation of Multibody and Finite Element Systems: An Efficient and Robust Semi-Implicit Coupling Approach
,”
Arch. Appl. Mech.
,
82
(
6
), pp.
723
741
.10.1007/s00419-011-0586-0
12.
Naya
,
M.
,
Cuadrado
,
J.
,
Dopico
,
D.
, and
Lugris
,
U.
,
2011
, “
An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison With Simplified and Co-Integration Approaches
,”
Arch. Mech. Eng.
,
58
(
2
), pp.
223
243
.10.2478/v10180-011-0016-4
13.
Schmoll
,
R.
, and
Schweizer
,
B.
,
2011
, “
Co-Simulation of Multibody and Hydraulic Systems: Comparison of Different Coupling Approaches
,”
Multibody Dynamics 2011, ECCOMAS Thematic Conference
,
J. C.
Samin
and
P.
Fisette
, eds.,
Brussels
,
Belgium
, July 4–7, pp.
1
13
.
14.
Eberhard
,
P.
,
Gaugele
,
T.
,
Heisel
,
U.
, and
Storchak
,
M.
,
2008
, “
A Discrete Element Material Model Used in a Co-Simulated Charpy Impact Test and for Heat Transfer
,”
Proceedings 1st International Conference on Process Machine Interactions
, Hannover, Germany, Sept. 3–4.
15.
Lehnart
,
A.
,
Fleissner
,
F.
, and
Eberhard
,
P.
,
2009
, “
Using SPH in a Co-Simulation Approach to Simulate Sloshing in Tank Vehicles
,”
Proceedings SPHERIC4
, Nantes, France, May 27–29.
16.
Spreng
,
F.
,
Eberhard
,
P.
, and
Fleissner
,
F.
,
2013
, “
An Approach for the Coupled Simulation of Machining Processes Using Multibody System and Smoothed Particle Hydrodynamics Algorithms
,”
Theor. Appl. Mech. Lett.
,
3
(
1
): p.
8-013005
.10.1063/2.1301305
17.
Friedrich
,
M.
, and
Ulbrich
,
H.
,
2010
, “
A Parallel Co-Simulation for Mechatronic Systems
,”
Proceedings of The 1st Joint International Conference on Multibody System Dynamics
, IMSD 2010, Lappeenranta, Finland, May 25–27.
18.
Gonzalez
,
F.
,
Gonzalez
,
M.
, and
Cuadrado
,
J.
,
2009
, “
Weak Coupling of Multibody Dynamics and Block Diagram Simulation Tools
,”
ASME
Paper No. DETC2009-86653.10.1115/DETC2009-86653
19.
Helduser
,
S.
,
Stuewing
,
M.
,
Liebig
,
S.
, and
Dronka
,
S.
,
2001
, “
Development of Electro-Hydraulic Actuators Using Linked Simulation and Hardware-in-the-Loop Technology
,” Power Transmission and Motion Control, C. Burrows and K. Edge, eds., Bath, UK, pp.
49
56
.
20.
Hippmann
,
G.
,
Arnold
,
M.
, and
Schittenhelm
,
M.
,
2005
, “
Efficient Simulation of Bush and Roller Chain Drives
,”
Proceedings of ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics
, J. Goicolea, J. Cuadrado, and J. G. Orden, eds., Madrid, Spain, June 21–24, pp.
1
18
.
21.
Wuensche
,
S.
,
Clauß
,
C.
,
Schwarz
,
P.
, and
Winkler
,
F.
,
1997
, “
Electro-Thermal Circuit Simulation Using Simulator Coupling
,”
IEEE Trans. Very Large Scale Integr. Syst.
,
5
(
3
), pp.
277
282
.10.1109/92.609870
22.
Gu
,
B.
, and
Asada
,
H. H.
,
2004
, “
Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models
,”
ASME J. Dyn. Syst., Meas. Control
,
126
(
1
), pp.
1
13
.10.1115/1.1648307
23.
Kübler
,
R.
, and
Schiehlen
,
W.
,
2000
, “
Two Methods of Simulator Coupling
,”
Math. Comput. Modell. Dyn. Syst.
,
6
(
2
), pp.
93
113
.10.1076/1387-3954(200006)6:2;1-M;FT093
24.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Predictor/Corrector Co-Simulation Approaches for Solver Coupling With Algebraic Constraints
,”
ZAMM-J. Appl. Math. Mech.
, (in press).10.1002/zamm.201300191
25.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Co-Simulation Methods for Solver Coupling With Algebraic Constraints: Semi-Implicit Coupling Techniques
,”
Proceedings of The 3rd Joint International Conference on Multibody System Dynamics and The 7th Asian Conference on Multibody Dynamics
, IMSD 2014, ACMD 2014, Bexco, Busan, Korea, June 30–July 3.
26.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Stabilized Index-2 Co-Simulation Approach for Solver Coupling With Algebraic Constraints
,”
Multibody Syst. Dyn.
, (in press).10.1007/s11044-014-9422-y
27.
Busch
,
M.
, and
Schweizer
,
B.
,
2010
, “
Numerical Stability and Accuracy of Different Co-Simulation Techniques: Analytical Investigations Based on a 2-DOF Test Model
,”
Proceedings of The 1st Joint International Conference on Multibody System Dynamics
, IMSD 2010, Lappeenranta, Finland, May 25–27.
28.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Semi-Implicit Co-Simulation Approach for Solver Coupling
,”
Arch. Appl. Mech.
, (in press).10.1007/s00419-014-0883-5
29.
Busch
,
M.
, and
Schweizer
,
B.
,
2011
, “
An Explicit Approach for Controlling the Macro-Step Size of Co-Simulation Methods
,”
Proceedings of The 7th European Nonlinear Dynamics
, ENOC 2011, Rome, Italy, July 24–29.
30.
Verhoeven
,
A.
,
Tasic
,
B.
,
Beelen
,
T. G. J.
,
ter Maten
,
E. J. W.
, and
Mattheij
,
R. M. M.
,
2008
, “
BDF Compound-Fast Multirate Transient Analysis With Adaptive Stepsize Control
,”
J. Numer. Anal. Ind. Appl. Math.
,
3
(
3–4
), pp.
275
297
.
31.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
2009
,
Solving Ordinary Differential Equations I: Nonstiff Problems
,
3rd ed.
,
Springer
, Berlin.
32.
Hairer
,
E.
, and
Wanner
,
G.
,
2010
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
2nd ed.
,
Springer
, Berlin.
33.
Gear
,
C. W.
, and
Wells
,
D. R.
,
1984
, “
Multirate Linear Multistep Methods
,”
BIT Numer. Math.
,
24
(
4
), pp.
484
502
.10.1007/BF01934907
You do not currently have access to this content.