In large direct-drive off-shore wind turbine generators one challenge is to engineer the system to function securely with an air gap length of about a thousandth of the outer rotor diameter. Compared to the large diameter of the generator rotor, the rolling element bearings can only be constructed with a relatively limited size. This makes it challenging to design appropriate constructions able to transmit the large applied magnetic forces encountered in the air gap of direct drive wind turbine generators. Currently, this challenge is met by designing stiff heavy rotors that are able to withstand the forces in the air gap. Incorporating flexibility into the design of the rotor structure can lead to a lighter less expensive rotor. In order to be able to do this the magnetomechanical coupling in the air gap and its effect on the structural dynamics need to be taken into account when predicting the intended flexibility. This paper introduces an approach for a multiphysical modal analysis that makes it possible to predict the dynamics of the strongly coupled magnetomechanical system. The new method is validated using measurements of a simple lab setup. It is then applied to a single-bearing design direct-drive wind turbine generator rotor to calculate the changes of the structural dynamics caused by the electromagnetomechanical coupling.

References

References
1.
Belahcen
,
A.
,
2006
, “
Vibrations of Rotating Electrical Machines Due to Magnetomechanical Coupling and Magnetostriction
,”
IEEE Trans. Magn.
,
42
(
4
), pp.
971
974
.10.1109/TMAG.2006.871469
2.
Delaere
,
K.
,
Belmans
,
R.
,
Hameyer
,
K.
,
Esat
,
E.
,
Elen
,
D.
,
Leuven
,
K. U.
,
Heylen
,
W.
, and
Sas
,
P.
,
1999
, “
Coupling of Magnetic Analysis and Vibrational Modal Analysis Using Local Forces
,”
Proceedings of the Xth International Symposium on Theoretical Electrical Engineering
, Magdeburg, Germany, Sept 6–9, pp.
417
422
.
3.
Pellerey
,
P.
,
Lanfranchi
,
V.
, and
Friedrich
,
G.
,
2012
, “
Coupled Numerical Simulation Between Electromagnetic and Structural Models. Influence of the Supply Harmonics for Synchronous Machine Vibrations
,”
IEEE Trans. Magn.
,
48
(
2
), pp.
983
986
.10.1109/TMAG.2011.2175714
4.
Torregrossa
,
D.
,
Peyraut
,
F.
,
Fahimi
,
B.
,
M'Boua
,
J.
, and
Miraoui
,
A.
,
2011
, “
Multiphysics Finite-Element Modeling for Vibration and Acoustic Analysis of Permanent Magnet Synchronous Machine
,”
IEEE Trans. Energy Convers.
,
26
(
2
), pp.
490
500
.10.1109/TEC.2010.2080681
5.
Shrestha
,
G.
,
Polinder
,
H.
,
Bang
,
D.-J.
, and
Ferreira
,
J. A.
,
2010
, “
Structural Flexibility: A Solution for Weight Reduction of Large Direct-Drive Wind-Turbine Generators
,”
IEEE Trans. Energy Convers.
,
25
(
3
), pp.
732
740
.10.1109/TEC.2010.2048713
6.
Kaltenbacher
,
M.
,
2007
,
Numerical Simulation of Mechatronic Sensors and Actuators
,
Springer
,
Berlin, Germany
.
7.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
, Vol.
1
,
Elsevier Butterworth-Heinemann
,
Oxford, UK
.
8.
Hannot
,
S.
,
2010
, “
Modeling Strategies for Electro-Mechanical Microsystems With Uncertainty Quantification Door
,” PhD thesis, TU Delft, Delft, The Netherland.
9.
Lovatt
,
H. C.
, and
Watterson
,
P. A.
,
2007
, “
Energy Stored in Permanent Magnets
,”
IEEE Trans. Magn.
,
35
(
1
), pp.
505
507
.10.1109/20.737473
10.
Fu
,
W.
,
Zhou
,
P.
,
Lin
,
D.
,
Stanton
,
S.
, and
Cendes
,
Z.
,
2004
, “
Magnetic Force Computation in Permanent Magnets Using a Local Energy Coordinate Derivative Method
,”
IEEE Trans. Magn.
,
40
(
2
), pp.
683
686
.10.1109/TMAG.2004.824774
11.
Woodson
,
H.
, and
Melcher
,
J. R.
,
1968
,
Electromechanical Dynamics
,
Wiley
,
New York
.
12.
Sanchez Grandia
,
R.
,
Aucejo Galindo
,
V.
,
Usieto Galve
,
A.
, and
Vives Fos
,
R.
,
2008
, “
General Formulation for Magnetic Forces in Linear Materials and Permanent Magnets
,”
IEEE Trans. Magn.
,
44
(
9
), pp.
2134
2140
.10.1109/TMAG.2008.2000493
13.
Vandevelde
,
L.
,
2001
, “
A Survey of Magnetic Force Distributions Based on Different Magnetization Models and on the Virtual Work Principle
,”
IEEE Trans. Magn.
,
37
(
5
), pp.
3405
3409
.10.1109/20.952624
14.
Coulomb
,
J.
, and
Meunier
,
G.
,
1984
, “
Finite Element Implementation of Virtual Work Principle for Magnetic or Electric Force and Torque Computation
,”
IEEE Trans. Magn.
,
20
(
5
), pp.
1894
1896
.10.1109/TMAG.1984.1063232
15.
Ren
,
Z.
,
Ionescu
,
B.
,
Besbes
,
M.
, and
Razek
,
A.
,
1995
, “
Calculation of Mechanical Deformation of Magnetic Materials in Electromagnetic Devices
,”
IEEE Trans. Magn.
,
31
(
3
), pp.
1873
1876
.10.1109/20.376403
16.
Sanchez-Grandia
,
R.
,
Vives-Fos
,
R.
, and
Aucejo-Galindo
,
V.
,
2006
, “
Magnetostatic Maxwell's Tensors in Magnetic Media Applying Virtual Works Method From Either Energy or Co-energy
,”
Eur. Phys. J. Appl. Phys.
,
35
(
01
), pp.
61
68
.10.1051/epjap:2006074
17.
Henrotte
,
F.
, and
Hameyer
,
K.
,
2004
, “
Computation of Electromagnetic Force Densities: Maxwell Stress Tensor vs. Virtual Work Principle
,”
J. Comput. Appl. Math.
,
168
(
1–2
), pp.
235
243
.10.1016/j.cam.2003.06.012
18.
Belahcen
,
A.
,
2005
, “
Magnetoelastic Coupling in Rotating Electrical Machines
,”
IEEE Trans. Magn.
,
41
(
5
), pp.
1624
1627
.10.1109/TMAG.2005.846123
19.
Rochus
,
V.
,
Rixen
,
D. J.
, and
Golinval
,
J.-C.
,
2006
, “
Monolithic Modelling of Electro-Mechanical Coupling in Micro-Structures
,”
Int. J. Numer. Methods Eng.
,
65
(
4
), pp.
461
493
.10.1002/nme.1450
20.
van Beek
,
A.
,
2006
,
Advanced Engineering Design: Lifetime Performance and Reliability
, Vol.
1
,
TU Delft
,
Delft, The Netherland
.
21.
While
,
M. F.
,
2013
, “
Rolling Element Bearing Vibration Transfer Characteristics: Effect of Stiffness
,”
ASME J. Appl. Mech.
,
46
(
3
), pp.
677
684
.10.1115/1.3424626
You do not currently have access to this content.