In this paper, we propose a technique for high-fidelity fluid–structure interaction (FSI) spatial interface reconstruction of a horizontal axis wind turbine (HAWT) rotor model composed of an elastic blade mounted on a rigid hub. The technique is aimed at enabling re-usage of existing blade finite element method (FEM) models, now with high-fidelity fluid subdomain methods relying on boundary-fitted mesh. The technique is based on the partition of unity (PU) method and it enables fluid subdomain FSI interface mesh of different components to be smoothly connected. In this paper, we use it to connect a beam FEM model to a rigid body, but the proposed technique is by no means restricted to any specific choice of numerical models for the structure components or methods of their surface recoveries. To stress-test robustness of the connection technique, we recover elastic blade surface from collinear mesh and remark on repercussions of such a choice. For the HAWT blade recovery method itself, we use generalized Hermite radial basis function interpolation (GHRBFI) which utilizes the interpolation of small rotations in addition to displacement data. Finally, for the composed structure we discuss consistent and conservative approaches to FSI spatial interface formulations.

References

1.
Hsu
,
M. C.
, and
Bazilevs
,
Y.
,
2012
, “
Fluid–Structure Interaction Modeling of Wind Turbines: Simulating the Full Machine
,”
Comput. Mech.
,
50
(
6
), pp.
821
833
.10.1007/s00466-012-0772-0
2.
Heinz
,
J. C.
,
2013
, “
Partitioned Fluid–Structure Interaction for Full Rotor Computations Using CFD
,” Ph.D. thesis, DTU Wind Energy, Lyngby, Denmark.
3.
Farhat
,
C.
,
Lesoinne
,
M.
, and
Tallec
,
P.
,
1998
, “
Load and Motion Transfer Algorithms for Fluid–Structure Interaction Problems With Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretisation and Application to Aeroelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
157
(1–2), pp.
95
114
.10.1016/S0045-7825(97)00216-8
4.
Boer
,
A. D.
,
van Zuijlen
,
A.
, and
Bijl
,
H.
,
2008
, “
Comparison of Conservative and Consistent Approaches for the Coupling of Non-Matching Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
49
), pp.
4284
4297
.10.1016/j.cma.2008.05.001
5.
Quaranta
,
G.
,
Masarati
,
P.
, and
Mantegazza
,
P.
,
2005
, “
A Conservative Mesh-Free Approach for Fluid–Structure Interface Problems
,”
International Conference on Computational Methods for Coupled Problems in Science and Engineering
, M. Papadrakakis, E. Õnate and B. Schreer (Eds), Barcelona, pp.
1
23
.
6.
Ahrem
,
R.
,
Beckert
,
A.
, and
Wendland
,
H.
,
2007
, “
Recovering Rotations in Aeroelasticity
,”
J. Fluid Struct.
,
23
(
6
), pp.
874
884
.10.1016/j.jfluidstructs.2007.02.003
7.
Matijašević
,
D.
, and
Terze
,
Z.
,
2013
, “
An Approach for the Spatial Coupling of Multibody System Chain in a Partitioned Algorithm
,”
ECCOMAS Conference Proceedings on Multibody Dynamics 2013
, pp.
883
892
.
8.
Malcolm
,
D.
, and
Laird
,
D.
,
2007
, “
Extraction of Equivalent Beam Properties From Blade Models
,”
Wind Energy
,
10
(
2
), pp.
135
157
.10.1002/we.213
9.
Hardy
,
R. L.
,
1971
, “
Multiquadric Equations of Topography and Other Irregular Surfaces
,”
J. Geophys. Res.
,
176
, pp.
1905
1915
.10.1029/JB076i008p01905
10.
Ahrem
,
A.
,
Beckert
,
A.
, and
Wendland
,
H.
,
2005
, “
A New Multivariate Interpolation Method for Large-Scale Spatial Coupling Problems in Aeroelasticity
,”
IFADS Conference Proceedings 2005
.
11.
Narcowich
,
F. J.
, and
Ward
,
J. D.
,
1994
, “
Generalized Hermite Interpolation Via Matrix-Valued Conditionally Positive Definite Functions
,”
Math. Comput.
,
63
(
208
), pp.
661
687
.10.1090/S0025-5718-1994-1254147-6
12.
Wendland
,
H.
,
2010
,
Scattered Data Approximation
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511617539
13.
Schaback
,
R.
,
1995
, “
Optimal Recovery in Translation-Invariant Spaces of Functions
,”
Ann. Numer. Math.
,
4
(
1–4
), pp.
547
556
.
14.
Tobor
,
I.
,
Reuter
,
P.
, and
Schlick
,
C.
,
2003
, “
Efficient Reconstruction of Large Scattered Geometric Datasets Using the Partition of Unity and Radial Basis Functions
,” LaBRI, Bordeaux, France, Technical Report No. 130103.
15.
Resor
,
B.
, and
Paquette
,
J.
,
2012
, “
A Numad Model of the SANDIA CX-100 Blade
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2012-9273.
16.
Sideroff
,
C.
,
Carrigan
,
T.
, and
Matus
,
R.
,
2011
, “
Hybrid Meshing for a Horizontal Axis Wind Turbine
,” http://www.pointwise.com
17.
Lombardi
,
M.
,
Parolini
,
N.
, and
Quarteroni
,
A.
,
2013
, “
Radial Basis Functions for Inter-Grid Interpolation and Mesh Motion in FSI Problems
,”
Appl. Mech. Eng.
,
256
, pp.
117
131
.10.1016/j.cma.2012.12.019
18.
Boer
,
A. D.
,
van Zuijlen
,
A.
, and
Bijl
,
H.
,
2007
, “
Review of Coupling Methods for Non-Matching Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
8
), pp.
1515
1525
.10.1016/j.cma.2006.03.017
You do not currently have access to this content.