The objective of this paper is to present an efficient beam formulation based on the boundary element method (BEM), for the nonlinear dynamic analysis of wind turbine towers of variable cross section founded either on surface or on monopile foundation system. The whole structure may undergo moderately large displacements, taking into account the effect of soil–structure kinematic and inertia interaction. The tower is subjected to the combined action of arbitrarily distributed or concentrated transverse wind loading as well as to seismic excitation together with axial loading arising from the self-weight of the tower and the mechanical parts. The Blade element momentum theory is taken into consideration in order to produce the wind load time histories, while the site seismic response is obtained through one dimensional shear wave propagation analysis. The soil–surface foundation system is formulated as equivalent lateral and rotational springs, while the case of monopile system is treated as a prismatic beam on elastic foundation assigning the corresponding springs and dashpots along its length. An extensive case study is carried out on a wind turbine tower–foundation system employing the generated wind velocity time histories and recorded earthquake accelerograms, providing insight to several structural phenomena. The results of the proposed model are compared wherever possible with those obtained from a commercial finite elements software package, illustrating the validity and the efficiency of the developed method. From the obtained results, the strong influence of the nonlinear effects on the dynamic response of the wind turbine tower is verified.

References

References
1.
Bhattacharya
,
S.
, and
Adhikari
,
S.
,
2011
, “
Experimental Validation of Soil–Structure Interaction of Offshore Wind Turbines
,”
Soil Dyn. Earthquake Eng.
,
31
(
5–6
), pp.
805
816
.10.1016/j.soildyn.2011.01.004
2.
Adhikari
,
S.
, and
Bhattacharya
,
S.
,
2012
, “
Dynamic Analysis of Wind Turbine Towers on Flexible Foundation
,”
Shock Vib.
,
19
(
1
), pp.
37
56
.10.1155/2012/408493
3.
Quiligan
,
A.
,
O'Connor
,
A.
, and
Pakrashi
, V
.
,
2012
, “
Fragility Analysis of Steel and Concrete Wind Turbine Towers
,”
Eng. Struct.
,
36
, pp.
270
282
.10.1016/j.engstruct.2011.12.013
4.
Bazeos
,
N.
,
Hatzigeorgiou
,
G. D.
,
Hondros
, I
. D.
,
Karamaneas
,
H.
,
Karabalis
,
D. L.
, and
Beskos
,
D. E.
,
2002
, “
Static, Seismic and Stability Analyses of a Prototype Wind Turbine Steel Tower
,”
Eng. Struct.
,
24
(
8
), pp.
1015
1025
.10.1016/S0141-0296(02)00021-4
5.
Lavassas
,
I.
,
Nikolaidis
,
G.
,
Zervas
,
P.
,
Efthimiou
,
E.
,
Doudoumis
, I
. N.
, and
Baniotopoulos
,
C. C.
,
2003
, “
Analysis and Design of the Prototype of a Steel 1-MW Wind Turbine Tower
,”
Eng. Struct.
,
25
(
8
), pp.
1097
1106
.10.1016/S0141-0296(03)00059-2
6.
Arasu
,
P. V.
,
Sagayaraj
,
D.
, and
Gowrishankar
,
J.
,
2011
,
Seismic Analysis of a Wind Turbine Steel Tower
,
Simulation Driven Innovation, L&T Integrated Engineering Services, HTC
, Altair – 2011 HyperWorks Technology Conference, Pune, India, Aug. 4–5.
7.
Al Hamaydeh
,
M.
, and
Hussain
,
S.
,
2011
, “
Optimized Frequency-Based Foundation Design for Wind Turbine Towers Utilizing Soil–Structure Interaction
,”
J. Franklin Inst.
,
348
(
7
), pp.
1470
1487
.10.1016/j.jfranklin.2010.04.013
8.
Dimopoulos
,
C. A.
, and
Gantes
,
C. J.
,
2013
, “
Comparison of Stiffening Types of the Cutout in Tubular Wind Turbine Towers
,”
J. Constr. Steel Res.
,
83
, pp.
62
74
.10.1016/j.jcsr.2012.12.016
9.
Lee
,
D.
,
Hodges
,
D. H.
, and
Patil
,
M. J.
,
2002
, “
Multi-Flexible-Body Dynamic Analysis of Horizontal Axis Wind Turbines
,”
Wind Energy
,
5
(
4
), pp.
281
300
.10.1002/we.66
10.
Murtagh
,
P. J.
,
Basu
,
B.
, and
Broderick
,
B. M.
,
2005
, “
Along-Wind Response of a Wind Turbine Tower With Blade Coupling Subjected to Rotationally Sampled Wind Loading
,”
Eng. Struct.
,
27
(
8
), pp.
1209
1219
.10.1016/j.engstruct.2005.03.004
11.
Zhao
,
X.
,
Maißer
,
P.
, and
Wu
,
J.
,
2007
, “
A New Multibody Modelling Methodology for Wind Turbine Structures Using a Cardanic Joint Beam Element
,”
Renewable Energy
,
32
(
3
), pp.
532
546
.10.1016/j.renene.2006.04.010
12.
Wang
,
J.
,
Qin
,
D.
, and
Lim
,
T. C.
,
2010
, “
Dynamic Analysis of Horizontal Axis Wind Turbine by Thin-Walled Beam Theory
,”
J. Sound Vib.
,
329
(
17
), pp.
3565
3586
.10.1016/j.jsv.2010.03.011
13.
Gebhardt
,
C. G.
,
Preidikman
,
S.
,
Jørgensen
,
M. H.
, and
Massa
,
J. C.
,
2012
, “
Non-Linear Aeroelastic Behavior of Large Horizontal-Axis Wind Turbines: A Multibody System Approach
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14719
14724
.10.1016/j.ijhydene.2011.12.090
14.
Andersen
,
L. V.
,
Vahdatirad
,
M. J.
,
Sichani
,
M. T.
, and
Sorensen
,
J. D.
,
2012
, “
Natural Frequencies of Wind Turbines on Monopile Foundations in Clayey Soils—A Probabilistic Approach
,”
Comput. Geotech.
,
43
, pp.
1
11
.10.1016/j.compgeo.2012.01.010
15.
Oh
,
K. Y.
,
Kim
,
J. Y.
, and
Lee
,
J. S.
,
2013
, “
Preliminary Evaluation of Monopile Foundation Dimensions for an Offshore Wind Turbine by Analyzing Hydrodynamic Load in the Frequency Domain
,”
Renewable Energy
,
54
, pp.
211
218
.10.1016/j.renene.2012.08.007
16.
Lombardi
,
D.
,
Bhattacharya
,
S.
, and
Wood
,
D. M.
,
2013
, “
Dynamic Soil–Structure Interaction of Monopile Supported Wind Turbines in Cohesive Soil
,”
Soil Dyn. Earthquake Eng.
,
49
, pp.
165
180
.10.1016/j.soildyn.2013.01.015
17.
Harte
,
M.
,
Basu
,
B.
, and
Nielsen
,
S. R. K.
,
2012
, “
Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction
,”
Eng. Struct.
,
45
, pp.
509
518
.10.1016/j.engstruct.2012.06.041
18.
Harte
,
M.
, and
Basu
,
B.
,
2013
, “
Foundation Impedance and Tower Transfer Functions for Offshore Wind Turbines
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
227
(
2
), pp.
150
161
.10.1177/1464419312473056
19.
Katsikadelis
,
J. T.
,
2002
, “
The Analog Equation Method. A Boundary-Only Integral Equation Method for Nonlinear Static and Dynamic Problems in General Bodies
,”
Theor. Appl. Mech.
,
27
, pp.
13
38
.10.2298/TAM0227013K
20.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
Amsterdam
.
21.
Ramm
,
E.
, and
Hofmann
,
T. J.
,
1995
,
Stabtragwerke, Der Ingenieurbau (Beam Structures in Civil Engineering)
,
G.
Mehlhorn
, ed.,
Band Baustatik/Baudynamik, Ernst & Sohn
,
Berlin
.
22.
Rothert
,
H.
, and
Gensichen
,
V.
,
1987
,
Nichtlineare Stabstatik (Nonlinear Frame Analysis)
,
Springer-Verlag
,
Berlin
.
23.
Sapountzakis
,
E. J.
, and
Dikaros
, I
. C.
,
2013
, “
Nonlinear Flexural-Torsional Dynamic Analysis of Beams of Variable Doubly Symmetric Cross Section—Application to Wind Turbine Towers
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
199
227
.10.1007/s11071-013-0779-x
24.
Sapountzakis
,
E. J.
, and
Kampitsis
,
A. E.
,
2010
, “
Nonlinear Dynamic Analysis of Timoshenko Beam-Columns Partially Supported on Tensionless Winkler Foundation
,”
Comput. Struct.
,
88
(
21–22
), pp.
1206
1219
.10.1016/j.compstruc.2010.06.010
25.
Kampitsis
,
A. E.
,
Sapountzakis
,
E. J.
,
Giannakos
,
S. K.
, and
Gerolymos
,
N. A.
,
2013
, “
Seismic Soil–Pile–Structure Kinematic and Inertial Interaction—A New Beam Approach
,”
Soil Dyn. Earthquake Eng.
,
55
, pp.
211
224
.10.1016/j.soildyn.2013.09.023
26.
Katsikadelis
,
J. T.
, and
Tsiatas
,
G. C.
,
2004
, “
Non-Linear Dynamic Analysis of Beams With Variable Stiffness
,”
J. Sound Vib.
,
270
(
4–5
), pp.
847
863
.10.1016/S0022-460X(03)00635-7
27.
Sapountzakis
,
E. J.
, and
Tsipiras
, V
. J.
,
2010
, “
Nonlinear Nonuniform Torsional Vibrations of Bars by the Boundary Element Method
,”
J. Sound Vib.
,
329
(
10
), pp.
1853
1874
.10.1016/j.jsv.2009.11.035
28.
Idriss
,
I. M.
, and
Sun
,
J. I.
,
1991
, “
SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits
,” Department of Civil and Environmental Engineering, University of California, Davis, Center for Geotechnical Modeling Report.
29.
Hansen
,
M. O. L.
,
2008
,
Aeordynamics of Wind Turbines
,
Earthscan
,
London, UK
.
30.
CEN/TC250
,
2004
, “
Eurocode 1: Actions on Structures-General Actions-Part 1–4: Wind Actions
,” prEN 1991-1-4.
31.
Koulatsou
,
K.
,
Petrini
,
F.
,
Vernardos
,
S.
, and
Gantes
,
C. J.
,
2013
, “
Artificial Time Histories of Wind Actions for Structural Analysis of Wind Turbines
,”
2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE
, EPOKA University,
Tirana, Albania
, May 23–25.
32.
Di Paola
,
M.
,
1998
, “
Digital Simulation of Wind Field Velocity
,”
J. Wind Eng. Ind. Aerodyn.
,
74–76
, pp.
91
109
.10.1016/S0167-6105(98)00008-7
33.
DNV/Risø
,
2002
, “
Guidelines for Design of Wind Turbines
,” Denmark.
34.
Jonkman
,
J. M.
,
2007
, “
Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine
,” Technical Report No. NREL/TP-500-41958.
35.
SOFiSTiK AG
,
2011
, SOFiSTiK Basics, Oberschleißheim.
You do not currently have access to this content.