Although wind turbine noise is mainly dominated by aero-acoustic noise, mechanical noise, coming from gearbox or generator, could—especially when it contains audible tonal components—result in nonconformity to local noise regulations. To reduce the mechanical noise from the gearbox, focus is put on first time right design. To achieve this, simulation models are being used earlier in the design process to predict possible issues. This paper starts with a short overview of the used model and gives additional insight in how forces from planetary gear stages should be introduced in the flexible housing. Main focus of this paper however is the approach that is being used to validate such a complex multibody model of a wind turbine gearbox. The validation approach consists of five levels: (1) individual components, (2) assembly of the empty gearbox housing, (3) the assembled gearbox, (4) the gearbox on the end-of-line (EOL) test rig, and (5) the gearbox in the wind turbine. This paper focuses on the experimental measurement results, the correlation approach for such complex models, and the results of this correlation for the first four levels showing the usability of these models to accurately predict the modal behavior.

References

References
1.
Goris
,
S.
,
Vanhollebeke
,
F.
,
Ribbentrop
,
A.
,
Markiewicz
,
M.
,
Schneider
,
L.
,
Wartzack
,
S.
,
Hendrickx
,
W.
, and
Desmet
,
W.
,
2013
, “
A Validated Virtual Prototyping Approach for Avoiding Wind Turbine Tonality
,”
Proceedings of 5th International Conference on Wind Turbine Noise
,
Denver, CO
, Aug. 28–30, pp.
1
10
.
3.
Özgüven
,
H. N.
, and
Houser
,
D.
,
1988
, “
Mathematical Models Used in Gear Dynamics. A Review
,”
J. Sound Vib.
,
121
(
3
), pp.
383
411
.10.1016/S0022-460X(88)80365-1
4.
He
,
S.
,
Singh
,
R.
, and
Pavic
,
G.
,
2008
, “
Effect of Sliding Friction on Gear Noise Based on a Refined Vibro-Acoustic Formulation
,”
Noise Control Eng. J.
,
56
(
3
), pp.
164
175
.10.3397/1.2938737
5.
Lim
,
T.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings, Part I: Bearing Stiffness Formulation
,”
J. Sound Vib.
,
139
(
2
), pp.
179
199
.10.1016/0022-460X(90)90882-Z
6.
Lim
,
T.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings, Part II: System Studies
,”
J. Sound Vib.
,
139
(
2
), pp.
201
225
.10.1016/0022-460X(90)90883-2
7.
Lim
,
T.
, and
Singh
,
R.
,
1991
, “
Vibration Transmission Through Rolling Element Bearings—Part III: Geared Rotor System Studies
,”
J. Sound Vib.
,
151
(
1
), pp.
31
54
.10.1016/0022-460X(91)90650-9
8.
Hambric
,
S.
,
Hanford
,
A.
,
Shepherd
,
M.
,
Campbell
,
R.
, and
Smith
,
E.
,
2010
, “
Rotorcraft Transmission Noise Path Model, Including Distributed Fluid Film Bearing Impedance Modeling
,” NASA Contractor Report No. NASA/CR-2010-216812.
9.
Hambric
,
S.
,
Shepherd
,
M.
, and
Campbell
,
2012
, “
Modeling Vibration Transmission in Gearbox/Shafting Systems Using an Augmented Component Mode Synthesis Approach
,”
Internoise Noise-Con Congr. Conf. Proc.
,
244
(
1
), pp.
93
104
.
10.
Hambric
,
S. A.
,
Shepherd
,
M. R.
,
Campbell
,
R. L.
, and
Hanford
,
A. D.
,
2013
, “
Simulations and Measurements of the Vibroacoustic Effects of Replacing Rolling Element Bearings With Journal Bearings in a Simple Gearbox
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031012
.10.1115/1.4024087
11.
Parker
,
R. G.
,
Guo
,
Y.
,
Eritenel
,
T.
, and
Ericson
,
T. M.
,
2012
, “
Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis
,” NASA Contractor Report No. NASA/CR-2012-217664.
12.
Guo
,
Y.
,
Eritenel
,
T.
,
Ericson
,
T. M.
, and
Parker
,
R. G.
,
2014
, “
Vibro-Acoustic Propagation of Gear Dynamics in a Gear-Bearing-Housing System
,”
J. Sound Vib.
,
333
(
22
), pp.
5762
5785
.10.1016/j.jsv.2014.05.055
13.
Musial
,
W.
,
Butterfield
,
S.
, and
McNiff
,
B.
,
2007
, “
Improving Wind Turbine Gearbox Reliability
,”
European Wind Energy Conference
,
Milan, Italy
, May 7–10, pp.
7
10
.
14.
Oyague
,
F.
,
Gorman
,
D.
, and
Sheng
,
S.
,
2010
, “
Nrel Gearbox Reliability Collaborative Experimental Data Overview and Analysis
,”
Windpower Conference and Exhibition
,
Dallas, TX
, May 23–26, Paper No. NREL/CP-500-48232.
15.
Link
,
H.
,
LaCava
,
W.
,
Van Dam
,
J.
,
McNiff
,
B.
,
Sheng
,
S.
,
Wallen
,
R.
,
McDade
,
M.
,
Lambert
,
S.
,
Butterfield
,
S.
, and
Oyague
,
F.
,
2011
, “
Gearbox Reliability Collaborative Project Report: Findings From Phase 1 and Phase 2 Testing
,” NREL, Technical Report No. NREL/TP-5000-51885.
16.
Link
,
H.
,
Keller
,
J.
,
Guo
,
Y.
, and
McNiff
,
B.
,
2013
, “
Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan
,”
National Renewable Energy Laboratory (NREL),
Golden, CO, Technical Report No. NREL/TP-5000-58190.
17.
Oyague
,
F.
,
Gorman
,
D.
, and
Sheng
,
S.
,
2008
, “
Progressive Dynamical Drive Train Modeling as Part of NREL Gearbox Reliability Collaborative
,”
Windpower 2008 Conference and Exhibition
,
Houston, TX
, June 1–4, Paper No. NREL/CP-500-43473.
18.
Oyague
,
F.
,
2009
, “
Gearbox Modeling and Load Simulation of a Baseline 750 KW Wind Turbine Using State-of-the-Art Simulation Codes
,” National Renewable Energy Laboratory, Technical Report No. NREL/TP-500-41160.
19.
LaCava
,
W.
,
Xing
,
Y.
,
Guo
,
Y.
, and
Moan
,
T.
,
2012
, “
Determining Wind Turbine Gearbox Model Complexity Using Measurement Validation and Cost Comparison
,”
European Wind Energy Association Annual Event
,
Copenhagen, Denmark
, April 16–19, Paper No. NREL/CP-5000-54545.
20.
Haastrup
,
M.
,
Mouritsen
,
O. Ø.
, and
Hansen
,
M. R.
,
2009
, “
Effect of Introducing Flexible Bodies in Multi Body Dynamics
,”
Proceedings of the Nordic Seminar on Computational Mechanics
,
Denmark
, Oct. 22–23, pp.
193
196
.
21.
Haastrup
,
M.
,
Hansen
,
M. R.
, and
Ebbesen
,
M. K.
,
2012
, “
Modeling of Wind Turbine Gearbox Mounting
,”
Model., Identif. Control
,
32
(
4
), pp.
141
149
.10.4173/mic.2011.4.2
22.
Haastrup
,
M.
,
Hansen
,
R.
,
Ebbesen
,
M. K.
, and
Mouritsen
,
O. Ø.
,
2012
, “
Modeling and Parameter Identification of Deflections in Planetary Stage of Wind Turbine Gearbox
,”
Model., Identif. Control
,
33
(
1
), pp.
1
11
.10.4173/mic.2012.1.1
23.
Marrant
,
B.
,
Vanhollebeke
,
F.
, and
Peeters
,
J.
,
2010
, “
Comparison of Multibody Simulations and Measurements of Wind Turbine Gearboxes at Hansenś 13 MW Test Facility
,”
Proceedings of the European Wind Energy Conference and Exhibition (EWEC)
, Warsaw, Poland, Apr. 20–23.
24.
Helsen
,
J.
,
Vanhollebeke
,
F.
,
De Coninck
,
F.
,
Vandepitte
,
D.
, and
Desmet
,
W.
,
2011
, “
Insights in Wind Turbine Drive Train Dynamics Gathered by Validating Advanced Models on a Newly Developed 13.2 MW Dynamically Controlled Test-Rig
,”
Mechatronics
,
21
(
4
), pp.
737
752
.10.1016/j.mechatronics.2010.11.005
25.
Helsen
,
J.
,
2012
, “
The Dynamics of High Power Density Gear Units With Focus on the Wind Turbine Application
,” Ph.D. thesis, KULeuven, Leuven, Belgium.
26.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
Cambridge University Press
, New York.
27.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
ASME Appl. Mech. Rev.
,
56
(
6
), pp.
553
613
.10.1115/1.1590354
28.
DIN 3960
,
1997
, Begriffe und Bestimmungsgrößen für Stirnräder (Zylinderräder) und Stirnradpaare (Zylinderradpaare) mit Evolventenverzahnung, Beuth Verlag GMBH, Berlin.
29.
DIN 3990-1
,
1987
, Tragfähigkeitsberechnung von Stirnrädern; Einführung und allgemeine Einflußfaktoren, Beuth Verlag GMBH, Berlin.
30.
Mauer
,
L.
,
2007
, “
Modellierung Von Zahnradgetrieben in Der Antriebstechnik Mit Dem Mks-Programm Simpack
,”
Proceedings of SimPEP Kongress
,
Germany, Würzburg
, Germany, June 14–15.
31.
Heirman
,
G. H.
, and
Desmet
,
W.
,
2010
, “
Interface Reduction of Flexible Bodies for Efficient Modeling of Body Flexibility in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
24
(
2
), pp.
219
234
.10.1007/s11044-010-9198-7
32.
Peeters
,
B.
,
Van der Auweraer
,
H.
,
Guillaume
,
P.
, and
Leuridan
,
J.
,
2004
, “
The Polymax Frequency-Domain Method: A New Standard for Modal Parameter Estimation?
,”
Shock Vib.
,
11
(
3
), pp.
395
409
.10.1155/2004/523692
33.
Peeters
,
B.
, and
Van der Auweraer
,
H.
,
2005
, “
Polymax: A Revolution in Operational Modal Analysis
,”
1st International Operational Modal Analysis Conference
, Copenhagen, Denmark, Apr. 26–27.
34.
Heylen
,
W.
, and
Sas
,
P.
,
2006
,
Modal Analysis Theory and Testing
,
Katholieke Universteit Leuven, Departement Werktuigkunde
,
Leuven, Belgium
.
35.
Kim
,
J.
,
Yoon
,
J.
, and
Kang
,
B.
,
2007
, “
Finite Element Analysis and Modeling of Structure With Bolted Joints
,”
Appl. Math. Model.
,
31
(
5
), pp.
895
911
.10.1016/j.apm.2006.03.020
36.
Montgomery
,
J.
,
2002
, “
Methods for Modeling Bolts in the Bolted Joint
,”
ANSYS User’s Conference
, Pittsburgh, PA, Apr. 22–24, Vol.
5
.
37.
Di Lorenzo
,
E.
,
Manzato
,
S.
,
Houben
,
J.
,
Vanhollebeke
,
F.
,
Goris
,
S.
, and
Peeters
,
B.
,
2014
, “
Wind Turbine Gearbox Dynamic Characterization Using Operational Modal Analysis
,”
Proceedings of 32nd International Modal Analysis Conference (IMAC 2014)
,
Orlando, FL
, April 8, pp.
41
52
.
You do not currently have access to this content.