In this investigation, the flexible tire model based on the absolute nodal coordinate formulation (ANCF) is integrated with LuGre tire friction model for evaluation of the longitudinal tire dynamics under severe braking scenarios. The ANCF-LuGre tire model developed allows for considering the nonlinear coupling between the dynamic structural deformation of the tire and its transient tire force distribution in the contact patch using general multibody dynamics computer algorithms. To this end, the contact patch obtained by the ANCF elastic ring tire model is discretized into small strips and the state of friction at each strip is defined by the differential equation associated with the discretized LuGre friction parameters. The normal contact pressure distribution predicted by the ANCF elastic ring elements that are in contact with the road surface are mapped onto the LuGre strips in the contact patch to evaluate the tangential tire force distribution and then the tire forces evaluated at LuGre strips are fed back to the generalized tangential contact forces of the ANCF elastic ring tire model. By doing so, the structural deformation of the ANCF elastic ring tire model is dynamically coupled with the LuGre tire friction in the final form of the governing equations. Furthermore, the systematic and automated parameter identification procedure for the LuGre tire force model is developed. It is shown that use of the proposed procedure with the modified friction curve proposed for wet road conditions leads to accurate prediction of the LuGre model parameters for measured tire force characteristics under various loading and speed conditions. Several numerical examples are presented in order to demonstrate the use of the in-plane ANCF-LuGre tire model for the longitudinal transient dynamics of tires under severe braking scenarios.

References

References
1.
Pacejka
,
H. B.
,
2002
,
Tire and Vehicle Dynamics
,
Society of Automotive Engineers (SAE)
,
Warrendale, PA
.
2.
Lugner
,
P.
,
Pacejka
,
H.
, and
Plochl
,
M.
,
2005
, “
Recent Advances in Tyre Models and Testing Procedures
,”
Veh. Syst. Dyn.
,
43
(
6–7
), pp.
413
436
.10.1080/00423110500158858
3.
Gim
,
G. H.
, and
Nikravesh
,
P. E.
,
1990
, “
An Analytical Model of Pneumatic Tires for Vehicle Dynamic Simulations—Part 1: Pure Slips
,”
Int. J. Veh. Des.
,
11
(
6
), pp.
589
618
.10.1504/IJVD.1990.061602
4.
Clover
,
C. L.
, and
Bernard
,
J. E.
,
1998
, “
Longitudinal Tire Dynamics
,”
Veh. Syst. Dyn.
,
29
(
4
), pp.
231
260
.10.1080/00423119808969374
5.
Canudas-de-Wit
,
C.
,
Tsiotras
,
P.
,
Velenis
,
E.
,
Basset
,
M.
, and
Gissinger
,
G.
,
2003
, “
Dynamic Friction Models for Road/Tire Longitudinal Interaction
,”
Veh. Syst. Dyn.
,
39
(
3
), pp.
189
226
.10.1076/vesd.39.3.189.14152
6.
Deur
,
J.
,
Ivanović
,
V.
,
Troulis
,
M.
,
Miano
,
C.
,
Hrovat
,
D.
, and
Asgari
,
J.
,
2005
, “
Extensions of the LuGre Tyre Friction Model Related to Variable Slip Speed Along the Contact Patch Length
,”
Veh. Syst. Dyn.
,
43
(
1
), pp.
508
524
.10.1080/00423110500229808
7.
Deur
,
J.
,
Ivanović
,
V.
,
Pavković
,
D.
,
Hrovat
,
D.
,
Asgari
,
J.
,
Troulis
,
M.
, and
Miano
,
C.
,
2005
, “
Experimental Analysis and Modelling of Longitudinal Tyre Friction Dynamics for Abrupt Transients
,”
Veh. Syst. Dyn.
,
43
(
1
), pp.
525
539
.10.1080/00423110500229766
8.
Alvarez
,
L.
,
Yi
,
J.
,
Horowitz
,
R.
, and
Olmos
,
L.
,
2005
, “
Dynamic Friction Model-Based Tire-Road Friction Estimation and Emergency Braking Control
,”
ASME Dyn. Syst., Meas. Control
,
127
(
1
), pp.
22
32
.10.1115/1.1870036
9.
Rajapakshe
,
M. P.
,
Gunaratne
,
M.
, and
Kaw
,
A. K.
,
2010
, “
Evaluation of LuGre Tire Friction Model With Measured Data on Multiple Pavement Surfaces
,”
Tire Sci. Technol.
,
38
(
3
), pp.
213
227
.10.2346/1.3481671
10.
Gipser
,
M.
,
2005
, “
FTire: A Physically Based Application-Oriented Tyre Model for Use With Detailed MBS and Finite-Element Suspension Models
,”
Veh. Syst. Dyn.
,
43
(
1
), pp.
76
91
.10.1080/00423110500139940
11.
Lee
,
C. R.
,
Kim
,
J. W.
,
Hallquist
,
J. O.
,
Zhang
,
Y.
, and
Farahani
,
A. D.
,
1997
, “
Validation of a FEA Tire Model for Vehicle Dynamic Analysis and Full Vehicle Real Time Proving Ground Simulations
,” SAE Technical Paper No. 971100.
12.
Koishi
,
M.
,
Kabe
,
K.
, and
Shiratori
,
M.
,
1998
, “
Tire Cornering Simulation Using an Explicit Finite Element Analysis Code
,”
Tire Sci. Technol.
,
26
(
2
), pp.
109
119
.10.2346/1.2135960
13.
Gruber
,
P.
,
Sharp
,
R. S.
, and
Crocombe
,
A. D.
,
2012
, “
Normal and Shear Forces in the Contact Patch of a Braked Racing Tyre. Part 2: Development of a Physical Tyre Model
,”
Veh. Syst. Dyn.
,
50
(
3
), pp.
339
356
.10.1080/00423114.2011.586429
14.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
Cambridge, UK
.
15.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
, New York.
16.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2009
, “
Nonlinear Elastic Ring Tire Model Using the Absolute Nodal Coordinate Formulation
,”
IMechE J. Multi-Body Dyn.
,
223
(
3
), pp.
211
219
.10.1243/14644193JMBD184
17.
Zegelaar
,
P. W. A.
,
Gong
,
S.
, and
Pacejka
,
H. B.
,
2008
, “
Tyre Models for the Study of In-Plane Dynamics
,”
Veh. Syst. Dyn.
,
23
(
Suppl.  1
), pp.
578
590
.10.1080/00423119308969542
18.
Kim
,
S.
,
Nikravesh
,
P. E.
, and
Gim
,
G.
,
2008
, “
A Two-Dimensional Tire Model on Uneven Roads for Vehicle Dynamic Simulation
,”
Veh. Syst. Dyn.
,
46
(
10
), pp.
913
930
.10.1080/00423110701729994
19.
Sugiyama
,
H.
,
Koyama
,
H.
, and
Yamashita
,
H.
,
2010
, “
Gradient Deficient Curved Beam Element Using the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021001
.10.1115/1.4000793
20.
Chung
,
J.
, and
Hubert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
21.
Deur
,
J.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2004
, “
A 3D Brush-Type Dynamic Tire Friction Model
,”
Veh. Syst. Dyn.
,
42
(
3
), pp.
133
173
.10.1080/00423110412331282887
You do not currently have access to this content.