This paper establishes the internal mathematical and energetic consistency of a hybrid-dynamical-system, lumped-parameter, planar, physical model for capturing transient interactions between an elastically deformable tire and an elastically deformable terrain as a baseline result for more realistic models that account for permanent deformation, shear failure, and three-dimensional contact conditions. The model accounts for radial and circumferential deformation of the tire as well as normal and tangential deformation of the terrain. It captures the onset and loss of contact as well as localized stick and slip phases for each of the discrete tire elements by a suitable evolution of a collection of associated internal state variables. The analysis characterizes generic transitions between distinct phases of contact uniquely in forward time and proves that all internal state variables remain bounded during compact intervals of contact. The behavior of the model is further illustrated through an analytical and numerical study of two instances of tire-terrain interactions under steady state condition.

References

References
1.
Ammon
,
D.
,
2005
, “
Vehicle Dynamics Analysis Tasks and Related Tyre Simulation Challenges
,”
Veh. Syst. Dyn.
,
43
, pp.
30
47
.10.1080/00423110500141003
2.
Abd El-Gawwad
,
K. A.
,
Crolla
,
D. A.
,
Soliman
,
A. M. A.
, and
El-Sayed
,
F. M.
,
1999
, “
Off-Road Tyre Modelling I: The Multi-Spoke Tyre Model Modified to Include the Effect of Straight Lugs
,”
J. Terramech.
,
36
(
1
), pp.
3
24
.10.1016/S0022-4898(98)00031-7
3.
Abd El-Gawwad
,
K. A.
,
Crolla
,
D. A.
,
Soliman
,
A. M. A.
, and
El-Sayed
,
F. M.
,
1999
, “
Off-Road Tyre Modelling II: Effect of Camber on Tyre Performance
,”
J. Terramech.
,
36
(
1
), pp.
25
38
.10.1016/S0022-4898(98)00032-9
4.
Sharp
,
R. S.
, and
El-Nashar
,
M. A.
,
1986
, “
Generally Applicable Digital Computer Based Mathematical Model for the Generation of Shear Forces by Pneumatic Tyres
,”
Veh. Syst. Dyn.
,
15
(
4
), pp.
187
209
.10.1080/00423118608968851
5.
Zhou
,
J.
,
Wong
,
J. Y.
, and
Sharp
,
R. S.
,
1999
, “
A Multi-Spoke, Three Plane Tyre Model for Simulation of Transient Behaviour
,”
Veh. Syst. Dyn.
,
31
(
1
), pp.
35
45
.10.1076/vesd.31.1.35.2099
6.
Ferhadbegovic
,
B.
,
Brinkmann
,
C.
, and
Kutzbach
,
H. D.
,
2005
Dynamic Longitudinal Model for Agricultural Tyres
,”
Proceedings of the 15th International Conference of the ISTVS
, Paper No. 5A03.
7.
Chan
,
B. J.
,
Thompson
,
N.
,
Sandu
,
C.
, and
Dankowicz
,
H.
,
2005
, “
A Novel Tire–Soil Interaction Model for Simulation of Off-Road Vehicles
,”
Proceedings of the 15th International Conference of the ISTVS
, Paper No. 3A03.
8.
Tsotras
,
A.
, and
Mavros
,
G.
,
2010
, “
Frictional Contact Behaviour of the Tyre: The Effect of Tread Slip on the In-Plane Structural Deformation and Stress Field Development
,”
Veh. Syst. Dyn.
,
48
(
8
), pp.
891
921
.10.1080/00423110903194534
9.
Sanghvi
,
P.
,
2010
, “
A Lumped-Parameter Model of Tire-Terrain Interactions for Off-Road Vehicles
,”
M.Sc. thesis
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
10.
Sanghvi
,
P.
,
Dankowicz
,
H.
, and
Romig
,
B. E.
,
2010
, “
A Steady State Model of the Contact Between a Deformable Tire and a Deformable Terrain
,” Proceedings of the
ASME 2010 International Design Engineering Technical Conferences
, Paper No. DETC2010-28318, pp. 129–135. 10.1115/DETC2010-28318
11.
Brixius
,
W. W.
,
1987
, “
Traction Prediction Equations for Bias-Ply Tires
,”
ASAE Paper No. 87-1622
. Available at http://bsesrv214.bse.vt.edu/dist_lecture_27/REFERENCES/Traction_Prediction_Equations_for_Bias_Ply_Tires.pdf
12.
Génot
,
F.
, and
Brogliato
,
B.
,
1999
, “
New Results on Painleve Paradoxes
,”
Eur. J. Mech., A/Solids
,
18
(
4
), pp.
653
677
.10.1016/S0997-7538(99)00144-8
13.
Nordmark
,
A.
,
Dankowicz
,
H.
, and
Champneys
,
A.
,
2011
, “
Friction-Induced Reverse Chatter in Rigid-Body Mechanisms with Impacts
,”
IMA J. Appl. Math.
,
76
(
1
), pp.
85
119
.10.1093/imamat/hxq068
14.
Deur
,
J.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2004
, “
A 3D Brush-Type Dynamic Tire Friction Model
,”
Veh. Syst. Dyn.
,
42
(
3
), pp.
133
173
.10.1080/00423110412331282887
15.
Mavros
,
G.
,
Rahnejat
,
H.
, and
King
,
P. D.
,
2005
, “
Transient Analysis of Tyre Friction Generation Using a Brush Model with Interconnected Viscoelastic Bristles
,”
Proc. Inst. Mech. Eng., K, J. Multibody Dyn.
,
219
(
3
), pp.
275
283
.
16.
Svendenius
,
J.
, and
Gäfvert
,
M.
,
2006
, “
A Semi-Empirical Dynamic Tire Model for Combined-Slip Forces
,”
Veh. Syst. Dyn.
,
44
(
2
), pp.
189
208
.10.1080/00423110500385659
17.
Liang
,
W.
,
Medanic
,
J.
, and
Ruhl
,
R.
,
2008
, “
Analytical Dynamic Tire Model
,”
Veh. Syst. Dyn.
,
46
(
3
), pp.
197
227
.10.1080/00423110701267466
18.
Nishihara
,
O.
, and
Masahiko
,
K.
,
2011
, “
Estimation of Road Friction Coefficient Based on the Brush Model
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
4
),
041006
.10.1115/1.4003266
19.
Liang
,
J.
,
Fillmore
,
S.
, and
Ma
,
O.
,
2012
, “
An Extended Bristle Friction Force Model with Experimental Validation
,”
Mech. Mach. Theory
,
56
, pp.
123
137
.10.1016/j.mechmachtheory.2012.06.002
20.
Li
,
J.
,
Zhang
,
Y.
, and
Yi
,
J.
,
2013
, “
A Hybrid Physical-Dynamic Tire/Road Friction Model
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
1
), p.
011007
.10.1115/1.4006887
You do not currently have access to this content.