Although traffic flow has attracted a great amount of attention in past decades, few of the studies focused on heterogeneous traffic flow consisting of different types of drivers or vehicles. This paper attempts to investigate the model and stability analysis of the heterogeneous traffic flow, including drivers with different characteristics. The two critical characteristics of drivers, sensitivity and cautiousness, are taken into account, which produce four types of drivers: the sensitive and cautious driver (S-C), the sensitive and incautious driver (S-IC), the insensitive and cautious driver (IS-C), and the insensitive and incautious driver (IS-IC). The homogeneous optimal velocity car-following model is developed into a heterogeneous form to describe the heterogeneous traffic flow, including the four types of drivers. The stability criterion of the heterogeneous traffic flow is derived, which shows that the proportions of the four types of drivers and their stability functions only relating to model parameters are two critical factors to affect the stability. Numerical simulations are also conducted to verify the derived stability condition and further explore the influences of the driver characteristics on the heterogeneous traffic flow. The simulations reveal that the IS-IC drivers are always the most unstable drivers, the S-C drivers are always the most stable drivers, and the stability effects of the IS-C and the S-IC drivers depend on the stationary velocity. The simulations also indicate that a wider extent of the driver heterogeneity can attenuate the traffic wave.

References

References
1.
Helbing
,
D.
,
2001
, “
Traffic and Related Self-Driven Many-Particle Systems
,”
Rev. Mod. Phys.
,
73
(
4
), pp.
1067
1141
.10.1103/RevModPhys.73.1067
2.
Schadschneider
,
A.
,
2002
, “
Traffic Flow: A Statistical Physics Point of View
,”
Physica A
,
313
(
1
), pp.
153
187
.10.1016/S0378-4371(02)01036-1
3.
Chowdhury
,
D.
,
Santen
,
L.
, and
Schadschneider
,
A.
,
2000
, “
Statistical Physics of Vehicular Traffic and Some Related Systems
,”
Phys. Rep.
,
323
(
4
), pp.
199
329
.10.1016/S0370-1573(99)00117-9
4.
Greenshields
,
B. D.
,
1935
, “
A Study of Traffic Capacity
,”
Proceedings of the Fourteenth Annual Meeting of the Highway Research Board
, Washington, D.C., pp.
448
477
.
5.
Prigogine
,
I.
and
Andrews
,
F. C.
,
1960
, “
A Boltzmann-Like Approach for Traffic Flow
,”
Oper. Res.
,
8
(
6
), pp.
789
797
.10.1287/opre.8.6.789
6.
Wagner
,
C.
,
Hoffmann
,
C.
,
Sollacher
,
R.
,
Wagenhuber
,
J.
, and
Schürmann
,
B.
,
1996
, “
Second-Order Continuum Traffic Flow Model
,”
Phys.Rev. E
,
54
(
5
), pp.
5073
5085
.10.1103/PhysRevE.54.5073
7.
Nagel
,
K.
and
Schreckenberg
,
M.
,
1992
, “
A Cellular Automaton Model for Freeway Traffic
,”
J. Phys, I
,
2
(
12
), pp.
2221
2229
.10.1051/jp1:1992277
8.
Herman
,
R.
,
Montroll
,
E. W.
,
Potts
,
R. B.
, and
Rothery
,
R. W.
,
1959
, “
Traffic Dynamics: Analysis of Stability in Car Following
,”
Oper. Res.
,
7
(
1
), pp.
86
106
.10.1287/opre.7.1.86
9.
Tang
,
T.
,
Li
,
C.
,
Wu
,
Y.
, and
Huang
,
H.
,
2011
, “
Impact of the Honk Effect on the Stability of Traffic Flow
,”
Physica A
,
390
(
20
), pp.
3362
3368
.10.1016/j.physa.2011.05.010
10.
Bando
,
M.
,
Hasebe
,
K.
,
Nakayama
,
A.
,
Shibata
,
A.
, and
Sugiyama
,
Y.
,
1995
, “
Dynamical Model of Traffic Congestion and Numerical Simulation
,”
Phys. Rev. E
,
51
(
2
), pp.
1035
1042
.10.1103/PhysRevE.51.1035
11.
Wilson
,
R. E.
and
Ward
,
J. A.
,
2011
, “
Car-Following Models: Fifty Years of Linear Stability Analysis—A Mathematical Perspective
,”
Transp. Plan. Technol.
,
34
(
1
), pp.
3
18
.10.1080/03081060.2011.530826
12.
Wilson
,
R. E.
,
2008
, “
Mechanisms for Spatio-Temporal Pattern Formation in Highway Traffic Models
,”
Philos. Trans. R. Soc. London, Ser. A
,
366
(
1872
), pp.
2017
2032
.10.1098/rsta.2008.0018
13.
Yang
,
S.
,
Liu
,
W.
,
Sun
,
D. H.
, and
Li
,
C.
,
2013
, “
A New Extended Multiple Car-Following Model Considering the Backward-Looking Effect on Traffic Flow
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011016
.10.1115/1.4007310
14.
Yang
,
D.
,
Jin
,
J. P.
,
Pu
,
Y.
, and
Ran
,
B.
,
2013
, “
Safe Distance Car-Following Model Including Backward-Looking and Its Stability Analysis
,”
Eur. Phys. J. B
,
86
(
3
), pp.
1
11
.
15.
Peng
,
G. H.
and
Cheng
,
R.
,
2013
, “
A New Car-Following Model With the Consideration of Anticipation Optimal Velocity
,”
Physica A
,
392
(
17
), pp.
3563
3569
.10.1016/j.physa.2013.04.011
16.
Wilson
,
R. E.
,
2001
, “
An Analysis of Gipps's Car-Following Model of Highway Traffic
,”
IMA J. Appl. Math.
,
66
(
5
), pp.
509
537
.10.1093/imamat/66.5.509
17.
Holland
,
E. N.
,
1998
, “
A Generalised Stability Criterion for Motorway Traffic
,”
Transp. Res., Part B: Methodol.
,
32
(
2
), pp.
141
154
.10.1016/S0191-2615(97)00021-0
18.
Ward
,
J. A.
,
2009
, “
Heterogeneity, Lane-Changing and Instability in Traffic: A Mathematical Approach
,” Ph.D. thesis, University of Bristol, Bristol, UK.
19.
Ossen
,
S.
,
Hoogendoorn
,
S. P.
, and
Gorte
,
B. G. H.
,
2006
, “
Interdriver Differences in Car-Following: A Vehicle Trajectory-Based Study
,”
Transp. Res. Rec.
,
1965
(
1
), pp.
121
129
.10.3141/1965-13
20.
Wang
,
L.
,
Zhang
,
H.
,
Meng
,
H.
, and
Wang
,
X.
,
2011
, “
The Influence of Individual Driver Characteristics on Congestion Formation
,”
Int. J. Mod. Phys. C
,
22
(
3
), pp.
305
318
.10.1142/S0129183111016233
21.
Taylor
,
J.
,
Zhou
,
X.
, and
Rouphail
,
N. M.
,
2012
, “
Method for Investigating Intradriver Heterogeneity Using Vehicle Trajectory Data: A Dynamic Time Warping Approach
,”
Proceedings of the Transportation Research Board 91st Annual Meeting
,
Nathan H.
Gartner
, ed.,
Washington, D.C
.
22.
Zhu
,
H.
and
Dai
,
S.
,
2008
, “
Analysis of Car-Following Model Considering Driver's Physical Delay in Sensing Headway
,”
Physica A
,
387
(
13
), pp.
3290
3298
.10.1016/j.physa.2008.01.103
23.
Yu
,
L.
,
Li
,
T.
, and
Shi
,
Z. K.
,
2010
, “
Density Waves in a Traffic Flow Model With Reaction-Time Delay
,”
Physica A
,
389
(
13
), pp.
2607
2616
.10.1016/j.physa.2010.03.009
24.
Tang
,
T.
,
Li
,
C.
, and
Huang
,
H.
,
2010
, “
A New Car-Following Model With the Consideration of the Driver's Forecast Effect
,”
Phys. Lett. A
,
374
(
38
), pp.
3951
3956
.10.1016/j.physleta.2010.07.062
25.
Bando
,
M.
,
Hasebe
,
K.
,
Nakanishi
,
K.
,
Nakayama
,
A.
,
Shibata
,
A.
, and
Sugiyama
,
Y.
,
1995
, “
Phenomenological Study of Dynamical Model of Traffic Flow
,”
J. Phys. I
,
5
(
11
), pp.
1389
1399
.10.1051/jp1:1995206
26.
Brockfeld
,
E.
,
Kühne
,
R. D.
, and
Wagner
,
P.
,
2005
, “
Calibration and Validation of Microscopic Models of Traffic Flow
,”
Transp. Res. Rec.
,
1934
(
1
), pp.
179
187
.10.3141/1934-19
27.
Ge
,
H. X.
,
Meng
,
X. P.
,
Cheng
,
R. J.
, and
Lo
,
S. M.
,
2011
, “
Time–Dependent Ginzburg–Landau Equation in a Car-Following Model Considering the Driver's Physical Delay
,”
Physica A
,
390
(
20
), pp.
3348
3353
.10.1016/j.physa.2011.04.033
28.
Jin
,
Y.
,
Xu
,
M.
, and
Gao
,
Z.
,
2011
, “
KdV and Kink-Antikink Solitons in an Extended Car-Following Model
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011018
.10.1115/1.4002336
29.
Shi
,
W.
,
Wei
,
Y. F.
,
Song
,
T.
,
Dai
,
S. Q.
, and
Dong
,
L.
,
2010
, “
Anticipation Driving Behavior and Related Reduction of Energy Consumption in Traffic Flow
,”
Int. J. Mod. Phys. C
,
21
(
7
), pp.
915
929
.10.1142/S0129183110015567
30.
Tang
,
T.
,
Li
,
Y.
, and
Huang
,
H.
,
2009
, “
The Effects of Taxi on Traffic Flow
,”
Int. J. Mod. Phys. C
,
20
(
10
), pp.
1537
1546
.10.1142/S0129183109014588
31.
Hasebe
,
K.
,
Nakayama
,
A.
, and
Sugiyama
,
Y.
,
2003
, “
Dynamical Model of a Cooperative Driving System for Freeway Traffic
,”
Phys. Rev. E
,
68
(
2
), pp.
026102
.10.1103/PhysRevE.68.026102
32.
Ward
,
J. A.
and
Wilson
,
R. E.
,
2011
, “
Criteria for Convective Versus Absolute String Instability in Car-Following Models
,”
Proc. R. Soc. London, Ser. A
,
467
(
2132
), pp.
2185
2208
.10.1098/rspa.2010.0437
33.
Yang
,
D.
,
Jin
,
J. P.
,
Pu
,
Y.
, and
Ran
,
B.
,
2013
, “
Stability Analysis of the Mixed Traffic Flow of Cars and Trucks Using Heterogeneous Optimal Velocity Car-Following Model
,”
Physica A
(in press).
34.
Lassarre
,
S.
,
Roussignol
,
M.
, and
Tordeux
,
A.
,
2012
, “
Linear Stability Analysis of First-Order Delayed Car-Following Models on a Ring
,”
Phys. Rev. E
,
86
(
3
), pp.
036207
.10.1103/PhysRevE.86.036207
35.
Mason
,
A. D.
and
Woods
,
A. W.
,
1997
, “
Car-Following Model of Multispecies Systems of Road Traffic
,”
Phys. Rev. E
,
55
(
3
), pp.
2203
2214
.10.1103/PhysRevE.55.2203
You do not currently have access to this content.