The aim of this paper is to propose a new numerical approach for modeling tires in multibody system (MBS) applications. In this approach, the tires, including the rigid rim, are modeled using one mesh developed using the finite element (FE) absolute nodal co-ordinate formulation (ANCF). The FE tire mesh, which allows for high spinning speed, has a constant inertia matrix and zero Coriolis and centrifugal forces. The connectivity conditions between the tire tread and rim are imposed at a preprocessing stage using linear constraint equations, thereby allowing for the elimination of dependent variables before the start of the simulation. The concept of the rim node is introduced in this paper to allow for the tire/axle assembly in MBS vehicle simulations. The rim node, which is not associated with a particular FE, is used to define the inertia of the rim, treated in this investigation as a rigid body. The procedure for evaluating the inertia coefficients associated with the rim node gradients is described. It is shown how fully parameterized ANCF beam and plate elements can be used to develop new tire geometry that captures details that cannot be captured using existing tire models. The concept of mixed ANCF FEs can also be used with both higher order fully parameterized and gradient deficient ANCF FEs to obtain a better distribution of the tire contact forces.

References

References
1.
Alvarez
,
L.
,
Yi
,
J.
,
Horowitz
,
R.
, and
Olmos
,
L.
,
2005
, “
Dynamic Friction Model-Based Tire-Road Friction Estimation and Emergency Braking Control
,”
ASME Dyn. Syst. Meas. Control
,
127
(
1
), pp.
22
32
.10.1115/1.1870036
2.
Canudas-de-Wit
,
C.
,
Tsiotras
,
P.
,
Velenis
,
E.
,
Basset
,
M.
, and
Gissinger
,
G.
,
2003
, “
Dynamic Friction Models for Road/Tire Longitudinal Interaction
,”
Veh. Syst. Dyn.
,
39
(
3
), pp.
189
226
.10.1076/vesd.39.3.189.14152
3.
Clover
,
C. L.
, and
Bernard
,
J. E.
,
1998
, “
Longitudinal Tire Dynamics
,”
Veh. Syst. Dyn.
,
29
(
4
), pp.
231
260
.10.1080/00423119808969374
4.
Deur
,
J.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2004
, “
A 3D Brush-Type Dynamic Tire Friction Model
,”
Veh. Syst. Dyn.
,
42
(
3
), pp.
133
173
.10.1080/00423110412331282887
5.
Deur
,
J.
,
Ivanović
,
V.
,
Pavković
,
D.
,
Hrovat
,
D.
,
Asgari
,
J.
,
Troulis
,
M.
, and
Miano
,
C.
,
2005
, “
Experimental Analysis and Modelling of Longitudinal Tyre Friction Dynamics for Abrupt Transients
,”
Veh. Syst. Dyn.
,
43
(
1
), pp.
525
539
.10.1080/00423110500229766
6.
Gim
,
G. H.
, and
Nikravesh
,
P. E.
,
1990
, “
An Analytical Model of Pneumatic Tires for Vehicle Dynamic Simulations. Part 1: Pure Slips
,”
Int. J. Veh. Des.
,
11
(
6
), pp.
589
618
.
7.
Gipser
,
M
.,
2005
, “
FTire: A Physically Based Application-Oriented Tyre Model for Use With Detailed MBS and Finite-Element Suspension Models
,”
Veh. Syst. Dyn.
,
43
(
1
), pp.
76
91
.10.1080/00423110500139940
8.
Gruber
,
P.
,
Sharp
,
R. S.
, and
Crocombe
,
A. D.
,
2012
, “
Normal and Shear Forces in the Contact Patch of a Braked Racing Tyre. Part 2: Development of a Physical Tyre Model
,”
Veh. Syst. Dyn.
,
50
(
2
), pp.
339
356
.10.1080/00423114.2011.586429
9.
Kim
,
S.
,
Nikravesh
,
P. E.
, and
Gim
,
G.
,
2008
, “
A Two-Dimensional Tire Model on Uneven Roads for Vehicle Dynamic Simulation
,”
Veh. Syst. Dyn.
,
46
(
10
), pp.
913
930
.10.1080/00423110701729994
10.
Koishi
,
M.
,
Kabe
,
K.
, and
Shiratori
,
M.
,
1998
, “
Tire Cornering Simulation Using an Explicit Finite Element Analysis Code
,”
Tire Sci. Technol.
,
26
(
2
), pp.
109
119
.10.2346/1.2135960
11.
Lee
,
C. R.
,
Kim
,
J. W.
,
Hallquist
,
J. O.
,
Zhang
,
Y.
, and
Farahani
,
A. D.
,
1997
, “
Validation of a FEA Tire Model for Vehicle Dynamic Analysis and Full Vehicle Real Time Proving Ground Simulations
,” SAE Technical Paper No. 971100.
12.
Lugner
,
P.
,
Pacejka
,
H.
, and
Plochl
,
M.
,
2005
, “
Recent Advances in Tyre Models and Testing Procedures
,”
Veh. Syst. Dyn.
,
43
(
67
), pp.
413
436
.10.1080/00423110500158858
13.
Pacejka
,
H. B.
,
2002
,
Tire and Vehicle Dynamics, Society of Automotive Engineers (SAE)
,
Warrendale
,
PA
.
14.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2009
, “
Nonlinear Elastic Ring Tire Model Using the Absolute Nodal Coordinate Formulation
,”
IMechE J. Multibody Dyn.
,
223
(
3
), pp.
211
219
.10.1243/14644193JMBD184
15.
Zegelaar
,
P. W. A.
,
Gong
,
S.
, and
Pacejka
,
H. B.
,
2008
, “
Tyre Models for the Study of In-Plane Dynamics
,”
Veh. Syst. Dyn.
,
23
(
1
), pp.
578
590
.10.1080/00423119308969542
16.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
17.
Dufva
,
K.
,
Kerkkanen
,
K.
,
Maqueda
,
L. G.
, and
Shabana
,
A. A.
,
2007
, “
Nonlinear Dynamics of Three-Dimensional Belt Drives Using the Finite Element Method
,”
Nonlinear Dyn.
,
48
(
4
), pp.
449
466
.10.1007/s11071-006-9098-9
18.
Maqueda
,
L. G.
,
Mohamed
,
A. A.
, and
Shabana
,
A. A.
,
2010
, “
Use of General Nonlinear Material Models in Beam Problems: Application to Belts and Rubber Chains
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021003
.10.1115/1.4000795
19.
Gantoi
,
F. M.
,
Brown
,
M. A.
, and
Shabana
,
A. A.
,
2013
, “
Finite Element Modeling of the Contact Geometry and Deformation in Biomechanics Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041013
.10.1115/1.4024541
20.
Yu
,
Z.
, and
Shabana
,
A. A.
,
2014
, “
Mixed ANCF Rectangular Plate Finite Element
,” Technical Report No. MBS2014-3-UIC, Department of Mechanical Engineering, The
University of Illinois at Chicago
,
Chicago, IL
.
21.
Yu
,
Z.
, and
Shabana
,
A. A.
,
2014
, “
Mixed-Coordinate ANCF Rectangular Plate Finite Element
,”
ASME J. Comput. Nonlinear Dyn
. (in press).
22.
Shabana
,
A. A.
,
2014
, “
ANCF Reference Node for Multibody System Applications
,”
IMechE J. Multibody Dyn.
(in press).
23.
Hamed
,
A. M.
,
Jayakumar
,
P.
,
Letherwood
,
M. D.
,
Gorsich
,
D. J.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
Ideal Compliant Joints and Integration of Computer Aided Design and Analysis
,”
ASME J. Comput. Nonlinear Dyn.
(in press).
You do not currently have access to this content.