This paper proposes two methodologies for estimating the parameters of the FitzHugh–Nagumo (FHN) neuron model. The identification procedures use only measurements of the membrane potential. The first technique is named the identification method based on integrals and wavelets (IMIW), which combines a parameterization based on integrals over finite time periods and a wavelet denoising technique for removing the measurement noise. The second technique, termed as the identification method based only on integrals (IMOI), does not use any wavelet denoising technique and attenuates the measurement noise by integrating the IMIW parameterization two times more over finite time periods. Both procedures use the least squares algorithm for estimating the FHN parameters. Integrating the FHN model over finite time periods allows eliminating the unmeasurable recovery variable of this model, thus obtaining a parameterization based on integrals of the measurable membrane potential variable. Unlike an identification technique recently published, the proposed methods do not rely on the time derivatives of the membrane potential and are not limited to continuously differentiable input current stimulus. Numerical simulations show that both the IMIW and IMOI have a good and a similar performance, however, the implementation of the latter is simpler than the implementation of the former.

References

References
1.
Rabinovich
,
M.
,
Varona
,
P.
,
Selverston
,
A.
, and
Abarbanel
,
H.
,
2010
, “
Dynamical Principles in Neuroscience
,”
Rev. Mod. Phys.
,
78
(
4
), pp.
1213
1265
.10.1103/RevModPhys.78.1213
2.
Cessac
,
B.
,
2010
, “
A Review of Neural Networks as Dynamical Systems
,”
Int. J. Bifurcation Chaos
,
20
(
6
), pp.
1585
1629
.10.1142/S0218127410026721
3.
Hodgkin
,
A.
, and
Huxley
,
A.
,
1952
, “
A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve
,”
J. Physiol.
,
117
(
4
), pp.
500
544
.10.1007/BF02459568
4.
FitzHugh
,
R.
,
1961
, “
Impulses and Physiological States in Models of Nerve Membrane
,”
Biophys. J.
,
1
, pp.
445
466
.10.1016/S0006-3495(61)86902-6
5.
Nagumo
,
J.
,
Arimoto
,
S.
, and
Yoshizawa
,
S.
,
1962
, “
An Active Pulse Transmission Line Simulating Nerve Axon
,”
Proc. IRE
,
50
(
10
), pp.
2061
2070
.10.1109/JRPROC.1962.288235
6.
Morris
,
C.
, and
Lecar
,
H.
,
1981
, “
Voltage Oscillations in the Barnacle Giant Muscle Fiber
,”
Biophys. J.
,
35
(
1
), pp.
193
213
.10.1016/S0006-3495(81)84782-0
7.
Hindmarsh
,
J.
, and
Rose
,
R.
,
1984
, “
A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations
,”
Proc. R. Soc. London B
,
221
(
1222
), pp.
87
102
.10.1098/rspb.1984.0024
8.
Tyukin
,
I.
,
Steur
,
E.
,
Nijmeijer
,
H.
,
Fairhurst
,
D.
,
Song
,
I.
,
Semyanov
,
A.
, and
Leeuwen
,
C.
,
2010
, “
State and Parameter Estimation for Canonic Models of Neural Oscillators
,”
Int. J. Neural Syst.
,
20
(
3
), pp.
193
207
.10.1142/S0129065710002358
9.
Fairhurst
,
D.
,
Tyukin
,
I.
,
Nijmeijer
,
H.
, and
Leeuwen
,
C.
,
2010
, “
Observers for Canonic Models of Neural Oscillators
,”
Math. Modell. Nat. Phenom.
,
5
(
2
), pp.
146
184
.10.1051/mmnp/20105206
10.
Moehlis
,
J.
,
Shea-Brown
,
E.
, and
Rabitz
,
H.
,
2006
, “
Optimal Inputs for Phase Models of Spiking Neurons
,”
J. Comput. Nonlinear Dyn.
,
1
(
4
), pp.
358
367
.10.1115/1.2338654
11.
Buhry
,
L.
,
Saigui
,
S.
,
Giremus
,
A.
,
Grivel
,
E.
, and
Renaud
,
S.
,
2008
, “
Parameter Estimation of the Hodgkin–Huxley Model Using Metaheuristics: Application to Neuromimetic Analog Integrated Circuits
,”
IEEE
Biomedical Circuits and Systems Conference
,
Baltimore, MD
, Nov. 20–22, pp.
173
176
.10.1109/BIOCAS.2008.4696902
12.
Sun
,
J.
,
Deng
,
B.
,
Wei
,
X.
,
Jia
,
C.
,
Wang
,
J.
, and
Zhao
,
J.
,
2011
, “
Parameter Estimation in Hodgkin–Huxley Model With Adaptive Method
,”
4th International conference on Biomedical Engineering and Informatics (BMEI)
,
Shanghai
, Oct. 15–17, pp.
1853
1857
.10.1109/BMEI.2011.6098699
13.
Deng
,
B.
,
Wang
,
J.
, and
Che
,
Y.
,
2009
, “
A Combined Method to Estimate Parameters of Neuron From a Heavily Noise-Corrupted Time Series of Active Potential
,”
Chaos
,
19
(
1
), p.
015105
.10.1063/1.3092907
14.
Julier
,
S.
, and
Uhlmann
,
J.
,
2004
, “
Unscented Filtering and Nonlinear Estimation
,”
Proc. IEEE
,
92
(
3
), pp.
401
422
.10.1109/JPROC.2003.823141
15.
Tokuda
,
I.
,
Parlitz
,
U.
,
Illing
,
L.
,
Kennel
,
M.
, and
Abarbanel
,
H.
,
2002
, “
Parameter Estimation for Neuron Models
,”
Proceedings of the 7th Experimental Chaos Conference
,
Baltimore, MD
, June 30–July 2, pp.
251
256
.
16.
Parlitz
,
U.
, and
Junge
,
L.
,
1996
, “
Synchronization-Based Parameter Estimation From Time Series
,”
Phys. Rev. E
,
54
(
6
), pp.
6253
6259
.10.1103/PhysRevE.54.6253
17.
Che
,
Y.
,
Geng
,
L.
,
Han
,
C.
,
Cui
,
S.
, and
Wang
,
J.
,
2012
, “
Parameter Estimation of the Fitzhugh–Nagumo Model Using Noisy Measurements for Membrane Potential
,”
Chaos
,
22
(
2
), p.
023139
.10.1063/1.4729458
18.
Ramsay
,
J.
,
Hooker
,
G.
,
Campbell
,
D.
, and
Cao
,
J.
,
2007
, “
Parameter Estimation for Differential Equations: A Generalized Smoothing Approach
,”
J. R. Stat. Soc.: Ser. B
,
69
(
5
), pp.
741
796
.10.1111/j.1467-9868.2007.00610.x
19.
Liang
,
H.
, and
Wu
,
H.
,
2008
, “
Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models
,”
J. Am. Stat. Assoc.
,
103
(
484
), pp.
1570
1583
.10.1198/016214508000000797
20.
Faghih
,
R.
,
Savla
,
K.
,
Dahleh
,
M.
, and
Brown
,
E.
,
2012
, “
Broad Range of Neural Dynamics From a Time Varying Fitzhugh Nagumo Model and Its Spiking Threshold Estimation
,”
IEEE Trans. Biomedical Eng.
,
59
(
3
), pp.
816
823
.10.1109/TBME.2011.2180020
21.
Daubechies
,
I.
,
1992
,
Ten Lectures on Wavelets
,
SIAM
,
Philadelphia, PA
.
22.
Sagara
,
S.
, and
Zhao
,
Z.
,
1990
, “
Numerical Integration Approach to On-Line Identification of Continuous-Time Systems
,”
Automatica
,
26
(
1
), pp.
63
74
.10.1016/0005-1098(90)90158-E
23.
Garnier
,
H.
,
Mensler
,
M.
, and
Richard
,
A.
,
2003
, “
Continuous-Time Model Identification From Sampled Data: Implementation Issues and Performance Evaluation
,”
Int. J. Control
,
76
(
13
), pp.
1337
1357
.10.1080/0020717031000149636
24.
Marsden
,
J.
,
1974
,
Elementary Classical Analysis
,
W. H. Freeman and Company
,
San Francisco, CA
.
25.
Eitelberg
,
E.
,
1988
, “
Continuous-Time System Representation With Exact Macro-Difference Expressions
,”
Int. J. Control
,
47
(
5
), pp.
1207
1212
.10.1080/00207178808906088
26.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Isermann
,
R.
, and
Munchhof
,
M.
,
2012
,
Identification of Dynamic Systems
,
Springer-Verlag Berlin Heidelberg
,
Germany
.
28.
Donoho
,
D.
,
1995
, “
De-Noising by Soft-Thresholding
,”
IEEE. Trans. Inf. Theory
,
41
(
3
), pp.
613
627
.10.1109/18.382009
You do not currently have access to this content.