In this paper, we establish exact solutions for some nonlinear fractional differential equations (FDEs). The first integral method with help of the fractional complex transform (FCT) is used to obtain exact solutions for the time fractional modified Korteweg–de Vries (fmKdV) equation and the space–time fractional modified Benjamin–Bona–Mahony (fmBBM) equation. This method is efficient and powerful in solving kind of other nonlinear FDEs.

References

References
1.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
2.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
San Diego, CA
.
3.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam
, Netherlands.
4.
El-Sayed
,
A. M. A.
, and
Gaber
,
M.
,
2006
, “
The Adomian Decomposition Method for Solving Partial Differential Equations of Fractal Order in Finite Domains
,”
Phys. Lett. A
,
359
(3), pp.
175
182
.10.1016/j.physleta.2006.06.024
5.
Safari
,
M.
,
Ganji
,
D. D.
, and
Moslemi
,
M.
,
2009
, “
Application of He's Variational Iteration Method and Adomian's Decomposition Method to the Fractional KdV–Burgers–Kuramoto Equation
,”
Comput. Math. Appl.
,
58
(11–12), pp.
2091
2097
.10.1016/j.camwa.2009.03.043
6.
Sweilam
,
N. H.
,
Khader
,
M. M.
, and
Al-Bar
,
R. F.
,
2007
, “
Numerical Studies for a Multi-Order Fractional Differential Equation
,”
Phys. Lett. A
,
371
(1–2), pp.
26
33
.10.1016/j.physleta.2007.06.016
7.
Inc
,
M.
,
2008
, “
The Approximate and Exact Solutions of the Space- and Time-Fractional Burgers Equations With Initial Conditions by Variational Iteration Method
,”
J. Math. Anal. Appl.
,
345
(1), pp.
476
484
.10.1016/j.jmaa.2008.04.007
8.
Song
,
L. N.
, and
Zhang
,
H. Q.
,
2009
, “
Solving the Fractional BBM-Burgers Equation Using the Homotopy Analysis Method
,”
Chaos
, Solitons Fractals,
40
(4), pp.
1616
1622
.10.1016/j.chaos.2007.09.042
9.
Arafa
,
A. A. M.
,
Rida
,
S. Z.
, and
Mohamed
,
H.
,
2011
, “
Homotopy Analysis Method for Solving Biological Population Model
,”
Commun. Theor. Phys.
,
56
(5), pp.
797
800
.10.1088/0253-6102/56/5/01
10.
Gepreel
,
K. A.
,
2011
, “
The Homotopy Perturbation Method Applied to the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equations
,”
Appl. Math. Lett.
,
24
(8), pp.
1428
1434
.10.1016/j.aml.2011.03.025
11.
Gupta
,
P. K.
, and
Singh
,
M.
,
2011
, “
Homotopy Perturbation Method for Fractional Fornberg–Whitham Equation
,”
Comput. Math. Appl.
,
61
(2), pp.
50
254
.10.1016/j.camwa.2010.10.045
12.
Odibat
,
Z.
, and
Momani
,
S.
,
2008
, “
Generalized Differential Transform Method for Linear Partial Differential Equations of Fractional Order
,”
Appl. Math. Lett.
,
21
(
2
), pp.
194
199
.10.1016/j.aml.2007.02.022
13.
Ertürk
,
V. S.
,
Momani
,
S.
, and
Odibat
,
Z.
,
2008
, “
Application of Generalized Differential Transform Method to Multi-Order Fractional Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
8
), pp.
1642
1654
.10.1016/j.cnsns.2007.02.006
14.
Zhang
,
S.
, and
Zhang
,
H.-Q.
,
2011
, “
Fractional Sub-Equation Method and Its Applications to Nonlinear Fractional PDEs
,”
Phys. Lett. A
,
375
(7), pp.
1069
1073
.10.1016/j.physleta.2011.01.029
15.
Tong
,
B.
,
He
,
Y.
,
Wei
,
L.
, and
Zhang
,
X.
,
2012
, “
A Generalized Fractional Sub-Equation Method for Fractional Differential Equations With Variable Coefficients
,”
Phys. Lett. A
,
376
(38–39), pp.
2588
2590
.10.1016/j.physleta.2012.07.018
16.
Guo
,
S.
,
Mei
,
L.
,
Li
,
Y.
, and
Sun
,
Y.
,
2012
, “
The Improved Fractional Sub-Equation Method and Its Applications to the Space–Time Fractional Differential Equations in Fluid Mechanics
,”
Phys. Lett. A
,
376
(4), pp.
407
411
.10.1016/j.physleta.2011.10.056
17.
Lu
,
B.
,
2012
, “
The First Integral Method for Some Time Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
395
(2), pp.
684
693
.10.1016/j.jmaa.2012.05.066
18.
Zhang
,
S.
,
Zong
,
Q.-A.
,
Liu
,
D.
, and
Gao
,
Q.
,
2010
, “
A Generalized Exp-Function Method for Fractional Riccati Differential Equations
,”
Commun. Fractional Calculus
,
1
(
1
), pp.
48
51
.
19.
Bekir
,
A.
,
Güner
,
Ö.
, and
Cevikel
,
A. C.
,
2013
, “
Fractional Complex Transform and Exp-Function Methods for Fractional Differential Equations
,”
Abstr. Appl. Anal.
,
2013
, p.
426462
.10.1155/2013/426462
20.
Zheng
,
B.
,
2012
, “(G'/G)
-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics
,”
Commun. Theor. Phys.
,
58
(5), pp.
623
630
.10.1088/0253-6102/58/5/02
21.
Gepreel
,
K. A.
, and
Omran
,
S.
,
2012
, “
Exact Solutions for Nonlinear Partial Fractional Differential Equations
,”
Chin. Phys. B
,
21
(
11
), p.
110204
.10.1088/1674-1056/21/11/110204
22.
Feng
,
Z. S.
,
2002
, “
The First Integral Method to Study the Burgers-KdV Equation
,”
J. Phys. A: Math. Gen.
,
35
(2), pp.
343
350
.10.1088/0305-4470/35/2/312
23.
Feng
,
Z. S.
, and
Wang
,
X. H.
,
2003
, “
The First Integral Method to the Two-Dimensional Burgers-KdV Equation
,”
Phys. Lett. A
,
308
(2–3), pp.
173
178
.10.1016/S0375-9601(03)00016-1
24.
Raslan
,
K. R.
,
2008
, “
The First Integral Method for Solving Some Important Nonlinear Partial Differential Equations
,”
Nonlinear Dyn.
,
53
(
4
), pp.
281
286
.10.1007/s11071-007-9262-x
25.
Abbasbandy
,
S.
, and
Shirzadi
,
A.
,
2010
, “
The First Integral Method for Modified Benjamin–Bona–Mahony Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
7
), pp.
1759
1764
.10.1016/j.cnsns.2009.08.003
26.
Tascan
,
F.
, and
Bekir
,
A.
,
2009
, “
Travelling Wave Solutions of the Cahn–Allen Equation by Using First Integral Method
,”
Appl. Math. Comput.
,
207
(
1
), pp.
279
282
.10.1016/j.amc.2008.10.031
27.
Taghizadeh
,
N.
, and
Mirzazadeh
,
M.
,
2011
, “
The First Integral Method to Some Complex Nonlinear Partial Differential Equations
,”
J. Comput. Appl. Math.
,
235
(
16
), pp.
4871
4877
.10.1016/j.cam.2011.02.021
28.
Deng
,
X.
,
2008
, “
Exact Peaked Wave Solution of CH-γ Equation by the First-Integral Method
,”
Appl. Math. Comput.
,
206
(
2
), pp.
806
809
.10.1016/j.amc.2008.09.039
29.
Kurulay
,
M.
, and
Bayram
,
M.
,
2010
, “
Approximate Analytical Solution for the Fractional Modified KdV by Differential Transform Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
1777
1782
.10.1016/j.cnsns.2009.07.014
30.
Alzaidy
,
J. F.
,
2013
, “
Fractional Sub-Equation Method and Its Applications to the Space–Time Fractional Differential Equations in Mathematical Physics
,”
Br. J. Math. Comput. Sci.
,
3
(
2
), pp.
153
163
.10.9734/BJMCS/2013/2908
31.
Jumarie
,
G.
,
2006
, “
Modified Riemann–Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results
,”
Comput. Math. Appl.
,
51
(9–10), pp.
1367
1376
.10.1016/j.camwa.2006.02.001
32.
Li
,
Z. B.
, and
He
,
J. H.
,
2010
, “
Fractional Complex Transform for Fractional Differential Equations
,”
Math. Comput. Appl.
,
15
(5), pp.
970
973
.
33.
Li
,
Z. B.
, and
He
,
J. H.
,
2011
, “
Application of the Fractional Complex Transform to Fractional Differential Equations
,”
Nonlinear Sci. Lett. A: Math. Phys. Mech.
,
2
(3), pp.
121
126
, available at: http://works.bepress.com/ji_huan_he/52.
34.
Ding
,
T. R.
, and
Li
,
C. Z.
,
1996
,
Ordinary Differential Equations
,
Peking University Press
,
Peking
, China.
35.
Bourbaki
,
N.
,
1972
,
Commutative Algebra
,
Addison-Wesley
,
Paris
, France.
36.
Feng
,
Z.
, and
Wang
,
X.
,
2001
, “
Explicit Exact Solitary Wave Solutions for the Kundu Equation and the Derivative Schrödinger Equation
,”
Phys. Scr.
,
64
(1), pp.
7
14
.10.1238/Physica.Regular.064a00007
37.
Feng
,
Z.
, and
Roger
,
K.
,
2007
, “
Traveling Waves to a Burgers–Korteweg–de Vries-Type Equation With Higher-Order Nonlinearities
,”
J. Math. Anal. Appl.
,
328
(2), pp.
1435
1450
.10.1016/j.jmaa.2006.05.085
You do not currently have access to this content.