In this work, we discuss an operational matrix approach for introducing an approximate solution of the fractional subdiffusion equation (FSDE) with both Dirichlet boundary conditions (DBCs) and Neumann boundary conditions (NBCs). We propose a spectral method in both temporal and spatial discretizations for this equation. Our approach is based on the space-time shifted Legendre tau-spectral method combined with the operational matrix of fractional integrals, described in the Riemann–Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. In addition, this approach is also investigated for solving the FSDE with the variable coefficients and the fractional reaction subdiffusion equation (FRSDE). For conforming the validity and accuracy of the numerical scheme proposed, four numerical examples with their approximate solutions are presented. Also, comparisons between our numerical results and those obtained by compact finite difference method (CFDM), Box-type scheme (B-TS), and FDM with Fourier analysis (FA) are introduced.

References

References
1.
Couceiro
,
M. S.
,
Ferreira
,
N. M. F.
, and
Machado
,
J. A. T.
,
2010
, “
Application of Fractional Algorithms in the Control of a Robotic Bird
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
4
), pp.
895
910
.10.1016/j.cnsns.2009.05.020
2.
Jesus
,
I. S.
, and
Machado
,
J. A. T.
, “
Fractional Control With a Smith Predictor
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031014
.10.1115/1.4002834
3.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
(North-Holland Mathematics Studies, Vol.
204
),
Elsevier Science B.V.
,
Amsterdam
.
4.
Machado
,
J. A. T.
,
2012
, “
The Effect of Fractional Order in Variable Structure Control
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3340
3350
.10.1016/j.camwa.2012.02.004
5.
Machado
,
J. A. T.
,
Kiryakova
,
V.
, and
Mainardi
,
F.
,
2011
, “
Recent History of Fractional Calculus
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1140
1153
.10.1016/j.cnsns.2010.05.027
6.
Mainardi
,
F.
,
1997
, “
Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics
,”
Fractals and Fractional Calculus in Continuum Mechanics
,
A.
Carpinteri
, and
F.
Mainardi
, eds.,
Springer-Verlag
,
New York
, pp.
291
348
.
7.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to The Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
8.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
9.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
(Mathematics in Science and Engineering),
Academic Press
,
New York
.
10.
Y.
Rossikhin
, and
M.
Shitikova
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), pp.
1
52
.10.1115/1.4000563
11.
Afrouzi
,
G. A.
,
Talarposhti
,
R. A.
, and
Ahangar
,
H.
,
2012
, “
Explicit Analytical Solution for a Kind of Time-Fractional Evolution Equations by He's Homotopy Perturbation Methods
,”
J. Math. Comput. Sci.
,
4
, pp.
278
282
.
12.
Odibat
,
Z.
,
Momani
,
S.
, and
Xu
,
H.
,
2010
, “
A Reliable Algorithm of Homotopy Analysis Method for Solving Nonlinear Fractional Differential Equations
,”
Appl. Math. Modell.
,
34
(
3
), pp.
593
600
.10.1016/j.apm.2009.06.025
13.
Song
,
L.
, and
Wang
,
W.
,
2013
, “
A New Improved Adomian Decomposition Method and Its Application to Fractional Differential Equations
,”
Appl. Math. Modell.
,
37
(
3
), pp.
1590
1598
.10.1016/j.apm.2012.03.016
14.
Ganjiani
,
M
.,
2010
, “
Solution of Nonlinear Fractional Differential Equations Using Homotopy Analysis Method
,”
Appl. Math. Modell.
,
34
(
6
), pp.
1634
1641
.10.1016/j.apm.2009.09.011
15.
Zurigat
,
M.
,
Momani
,
S.
,
Odibat
,
Z.
, and
Alawneh
,
A.
,
2010
, “
The Homotopy Analysis Method for Handling Systems of Fractional Differential Equations
,”
Appl. Math. Modell.
,
34
(
1
), pp.
24
35
.10.1016/j.apm.2009.03.024
16.
Darzi
,
R.
,
Mohammadzade
,
B.
,
Mousavi
,
S.
, and
Beheshti
,
R.
,
2013
, “
Sumudu Transform Method for Solving Fractional Differential Equations and Fractional Diffusion-Wave Equation
,”
J. Math. Comput. Sci.
,
6
, pp.
79
84
.
17.
Neamaty
,
A.
,
Agheli
,
B.
, and
Darzi
,
R.
,
2013
, “
Solving Fractional Partial Differential Equation by Using Wavelet Operational Method
,”
J. Math. Comput. Sci.
,
7
, pp.
230
240
.
18.
Erjaee
,
G. H.
,
Taghvafard
,
H.
, and
Alnasr
,
M.
,
2011
, “
Numerical Solution of the High Thermal Loss Problem Presented by a Fractional Differential Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1356
1362
.10.1016/j.cnsns.2010.06.031
19.
Garrappa
,
R.
,
2009
, “
On Some Explicit Adams Multistep Methods for Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
229
(
2
), pp.
392
399
.10.1016/j.cam.2008.04.004
20.
Garrappa
,
R.
, and
Popolizio
,
M.
,
2011
, “
On Accurate Product Integration Rules for Linear Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
235
(
5
), pp.
1085
1097
.10.1016/j.cam.2010.07.008
21.
Bhrawy
,
A. H.
,
Tharwat
,
M. M.
, and
Yildirim
,
A.
,
2012
, “
A New Formula for Fractional Integrals of Chebyshev Polynomials: Application for Solving Multi-Term Fractional Differential Equations
,”
Appl. Math. Modell.
,
37
(
6
), pp.
4245
4252
.10.1016/j.apm.2012.08.022
22.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Ezz-Eldien
,
S. S.
,
2011
, “
Efficient Chebyshev Spectral Methods for Solving Multi-Term Fractional Orders Differential Equations
,”
Appl. Math. Modell.
,
35
(
12
), pp.
5662
5672
.10.1016/j.apm.2011.05.011
23.
Bhrawy
,
A. H.
,
Alofi
,
A. S.
, and
Ezz-Eldien
,
S. S.
,
2011
, “
A Quadrature Tau Method for Variable Coefficients Fractional Differential Equations
,”
Appl. Math. Lett.
,
24
(
12
), pp.
2146
2152
.10.1016/j.aml.2011.06.016
24.
Bhrawy
,
A. H.
, and
Al-Shomrani
,
M. M.
,
2012
, “
A Shifted Legendre Spectral Method for Fractional-Order Multi-Point Boundary Value Problems
,”
Adv. Differ. Equations
,
2012
, p.
8
.10.1186/1687-1847-2012-8
25.
Doha
,
E. H.
,
Bhrawy
,
A. H.
,
Baleanu
,
D.
, and
Ezz-Eldien
,
S. S.
,
2013
, “
On Shifted Jacobi Spectral Approximations for Solving Fractional Differential Equations
,”
Appl. Math. Comput.
,
219
(
15
), pp.
8042
8056
.10.1016/j.amc.2013.01.051
26.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Ezz-Eldien
,
S. S.
,
2011
, “
A Chebyshev Spectral Method Based on Operational Matrix for Initial and Boundary Value Problems of Fractional Order
,”
Comput. Math. Appl.
,
62
(
5
), pp.
2364
2373
.10.1016/j.camwa.2011.07.024
27.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Ezz-Eldien
,
S. S.
,
2012
, “
A New Jacobi Operational Matrix: An Application for Solving Fractional Differential Equations
,”
Appl. Math. Modell.
,
36
(
10
), pp.
4931
4943
.10.1016/j.apm.2011.12.031
28.
Karimi Vanani
,
S.
, and
Aminataei
,
A.
,
2011
, “
Operational Tau Approximation for a General Class of Fractional Integro-Differential Equations
,”
Comput. Appl. Math.
,
30
(
3
), pp.
655
674
.10.1590/S1807-03022011000300010
29.
Mokhtary
,
P.
, and
Ghoreishi
,
F.
,
2011
, “
The L2–Convergence of the Legendre Spectral Tau Matrix Formulation for Nonlinear Fractional Integro Differential Equations
,”
Numer. Algorithms
,
58
(
4
), pp.
475
496
.10.1007/s11075-011-9465-6
30.
Saadatmandi
,
A.
, and
Dehghan
,
M.
,
2010
, “
A New Operational Matrix for Solving Fractional-Order Differential Equations
,”
Comput. Math. Appl.
,
59
(
3
), pp.
1326
1336
.10.1016/j.camwa.2009.07.006
31.
Bhrawy
,
A. H.
,
Alghamdi
,
M. A.
, and
Taha
,
T. M.
,
2012
, “
A New Modified Generalized Laguerre Operational Matrix of Fractional Integration for Solving Fractional Differential Equations on the Half Line
,”
Adv. Differ. Equations
,
2012
, p.
179
.10.1186/1687-1847-2012-179
32.
Bhrawy
,
A. H.
, and
Alofi
,
A. S.
,
2013
, “
The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials
,”
Appl. Math. Lett.
,
26
(
1
), pp.
25
31
.10.1016/j.aml.2012.01.027
33.
Akrami
,
M. H.
,
Atabakzadeh
,
M. H.
, and
Erjaee
,
G. H.
,
2013
, “
The Operational Matrix of Fractional Integration for Shifted Legendre Polynomials
,”
Iran. J. Sci. Technol.
,
37
, pp.
439
444
.
34.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Ezz-Eldien
,
S. S.
,
2013
, “
Numerical Approximations for Fractional Diffusion Equations via a Chebyshev Spectral-Tau Method
,”
Cent. Eur. J. Phys.
,
11
(
10
), pp.
1494
1503
.10.2478/s11534-013-0264-7
35.
Ren
,
R.
,
Li
,
H.
,
Jiang
,
W.
, and
Song
,
M.
,
2013
, “
An Efficient Chebyshev-Tau Method for Solving the Space Fractional Diffusion Equations
,”
Appl. Math. Comput.
,
224
, pp.
259
267
.10.1016/j.amc.2013.08.073
36.
Saadatmandi
,
A.
, and
Dehghan
,
M.
,
2011
, “
A Tau Approach for Solution of the Space Fractional Diffusion Equation
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1135
1142
.10.1016/j.camwa.2011.04.014
37.
Bhrawy
,
A. H.
,
Doha
,
E. H.
,
Baleanu
,
D.
, and
Ezz-Eldien
,
S. S.
, “
A Spectral Tau Algorithm Based on Jacobi Operational Matrix for Numerical Solution of Time Fractional Diffusion-Wave Equations
,”
J. Comput. Phys.
(in press).
38.
Gao
,
G.
, and
Sun
,
Z.
,
2011
, “
A Compact Finite Difference Scheme for the Fractional Sub-Diffusion Equations
,”
J. Comput. Phys.
,
230
(
3
), pp.
586
595
.10.1016/j.jcp.2010.10.007
39.
Zhang
,
Y. N.
, and
Sun
,
Z. Z.
,
2011
, “
Alternating Direction Implicit Schemes for the Two-Dimensional Sub-Diffusion Equation
,”
J. Comput. Phys.
,
230
(
24
), pp.
8713
8728
.10.1016/j.jcp.2011.08.020
40.
Cui
,
M. R.
,
2012
, “
Compact Alternating Direction Implicit Method for Two-Dimensional Time Fractional Diffusion Equation
,”
J. Comput. Phys.
,
231
(
6
), pp.
2621
2633
.10.1016/j.jcp.2011.12.010
41.
Chen
,
C.
,
Liu
,
F.
,
Turner
,
I.
, and
Anh
,
V.
,
2010
, “
Numerical Schemes and Multivariate Extrapolation of a Two-Dimensional Anomalous Sub-Diffusion Equation
,”
Numer. Algorithms
,
54
(
1
), pp.
1
21
.10.1007/s11075-009-9320-1
42.
Langlands
,
T. A. M.
, and
Henry
,
B. I.
,
2005
, “
The Accuracy and Stability of an Implicit Solution Method for the Fractional Diffusion Equation
,”
J. Comput. Phys.
,
205
(
2
), pp.
719
736
.10.1016/j.jcp.2004.11.025
43.
Povstenko
,
Y.
,
2010
, “
Signaling Problem for Time-Fractional Diffusion-Wave Equation in a Half-Space in the Case of Angular Symmetry
,”
Nonlinear Dyn.
,
59
(
4
), pp.
593
605
.10.1007/s11071-009-9566-0
44.
Zhao
,
X.
, and
Sun
,
Z.
,
2011
, “
A Box-Type Scheme for Fractional Sub-Diffusion Equation With Neumann Boundary Conditions
,”
J. Comput. Phys.
,
230
(
15
), pp.
6061
6074
.10.1016/j.jcp.2011.04.013
45.
Ren
,
J.
,
Sun
,
Z.
, and
Zhao
,
X.
,
2013
, “
Compact Difference Scheme for the Fractional Sub-Diffusion Equation With Neumann Boundary Conditions
,”
J. Comput. Phys.
,
232
(
1
), pp.
456
467
.10.1016/j.jcp.2012.08.026
46.
Cui
,
M.
,
2009
, “
Compact Finite Difference Method for the Fractional Diffusion Equation
,”
J. Comput. Phys.
,
228
(
20
), pp.
7792
7804
.10.1016/j.jcp.2009.07.021
47.
Zhao
,
X.
, and
Xu
,
Q.
, “
Efficient Numerical Schemes for Fractional Sub-Diffusion Equation With the Spatially Variable Coefficient
,”
Appl. Math. Modell.
, (in press).
48.
Chen
,
C.
,
Liu
,
F.
, and
Burrage
,
K.
,
2008
, “
Finite Difference Methods and a Fourier Analysis for the Fractional Reaction-Subdiffusion Equation
,”
Appl. Math. Comput.
,
198
(
2
), pp.
754
769
.10.1016/j.amc.2007.09.020
49.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
1989
,
Spectral Methods in Fluid Dynamics
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.