A lot of progress has been made in the research of hybrid function projective synchronization (HFPS) for chaotic real nonlinear systems, while the HFPS of two different chaotic complex nonlinear systems with nonidentical dimensions is seldom reported in the literatures. So this paper discusses the HFPS of general chaotic complex system described by a unified mathematical expression with different dimensions and fully unknown parameters. Based on the Lyapunov stability theory, the adaptive controller is designed to synchronize two general uncertain chaotic complex systems with different orders in the sense of HFPS and the parameter update laws for estimating unknown parameters of chaotic complex systems are also given. Moreover, the control coefficients can be automatically adapted to updated laws. Finally, the HFPS between hyperchaotic complex Lorenz system and complex Chen system and that between chaotic complex Lorenz system and hyperchaotic complex Lü are taken as two examples to demonstrate the effectiveness and feasibility of the proposed HFPS scheme.

References

References
1.
Kocarev
,
L.
, and
Parlitz
,
U.
,
1995
, “
General Approach for Chaotic Synchronization With Applications to Communication
,”
Phys. Rev. Lett.
,
74
(
25
), pp.
5028
5031
.10.1103/PhysRevLett.74.5028
2.
Chen
,
G.
, and
Dong
,
X.
,
1998
,
From Chaos to Order: Methodologies, Perspectives and Applications
,
World Scientific
,
Singapore
.
3.
Blasius
,
B.
,
Huppert
,
A.
, and
Stone
,
L.
,
1999
, “
Complex Dynamics and Phase Synchronization in Spatially Extended Ecological Systems
,”
Nature
,
399
, pp.
354
359
.10.1038/20676
4.
Kiss
,
I. Z.
,
Kori
,
H.
, and
Hudson
,
J. L.
,
2007
, “
Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization
,”
Science
,
316
(5833), pp.
1886
1889
.10.1126/science.1140858
5.
Kocarev
,
L.
, and
Parlitz
,
U.
,
1996
, “
Generalized Synchronization, Predictability, and Equivalence of Unidirectionally Coupled Dynamical Systems
,”
Phys. Rev. Lett.
,
76
, pp.
1816
1819
.10.1103/PhysRevLett.76.1816
6.
Sun
,
J.
,
Bollt
,
E. M.
, and
Nishikawa
,
T.
,
2009
, “
Constructing Generalized Synchronization Manifolds by Manifold Equation
,”
SIAM J. Appl. Dyn. Syst.
,
8
(1), pp.
202
221
.10.1137/080721340
7.
Michael
,
G.
,
Arkady
,
S.
, and
Jrgen
,
K.
,
1996
, “
Phase Synchronization of Chaotic Oscillators
,”
Phys. Rev. Lett.
,
76
, pp.
1804
1807
.10.1103/PhysRevLett.76.1804
8.
Ho
,
M.
,
Hung
,
Y.
, and
Chou
,
C.
,
2002
, “
Phase and Anti-Phase Synchronization of Two Chaotic Systems by Using Active Control
,”
Phys. Lett. A
,
296
(1), pp.
43
48
.10.1016/S0375-9601(02)00074-9
9.
Chen
,
Y.
,
Chen
,
X.
, and
Gu
,
S.
,
2007
, “
Lag Synchronization of Structurally Nonequivalent Chaotic Systems With Time Delays
,”
Nonlinear Anal.
,
66
(9), pp.
1929
1937
.10.1016/j.na.2006.02.033
10.
Mahmoud
,
E.
,
2012
, “
Adaptive Anti-Lag Synchronization of Two Identical or Non-Identical Hyperchaotic Complex Nonlinear Systems With Uncertain Parameters
,”
J. Franklin Inst.
,
349
(3), pp.
1247
1266
.10.1016/j.jfranklin.2012.01.010
11.
Kim
,
C.
,
Rim
,
S.
,
Kye
,
W.
,
Ryu
,
J.
, and
Park
,
Y.
,
2003
, “
Anti-Synchronization of Chaotic Oscillators
,”
Phys. Lett. A
,
320
(1), pp.
39
46
.10.1016/j.physleta.2003.10.051
12.
Grassi
,
G.
,
2010
, “
Propagation of Projective Synchronization in a Series Connection of Chaotic Systems
,”
J. Franklin Inst.
,
345
(2), pp.
438
451
.10.1016/j.jfranklin.2009.10.004
13.
Li
,
K.
,
Zhao
,
M.
, and
Fu
,
X.
,
2009
, “
Projective Synchronization of Driving-Response Systems and Its Application to Secure Communication
,”
IEEE Trans. Circuits Syst. I
,
56
(10), pp.
2280
2291
.10.1109/TCSI.2008.2012208
14.
Yu
,
Y.
, and
Li
,
H.
,
2011
, “
Adaptive Hybrid Projective Synchronization of Uncertain Chaotic Systems Based on Backstepping Design
,”
Nonlinear Anal.: Real World Appl.
,
12
(1), pp.
388
393
.10.1016/j.nonrwa.2010.06.024
15.
Cai
,
N.
,
Jing
,
Y.
, and
Zhang
,
S.
,
2010
, “
Modified Projective Synchronization of Chaotic Systems With Disturbances Via Active Sliding Mode Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
6
), pp.
1613
1620
.10.1016/j.cnsns.2009.06.012
16.
Liu
,
P.
,
Liu
,
S.
, and
Li
,
X.
,
2012
, “
Adaptive Modified Function Projective Synchronization of General Uncertain Chaotic Complex Systems
,”
Phys. Scr.
,
85
(3), p.
035005
.10.1088/0031-8949/85/03/035005
17.
Sudheerand
,
K.
, and
Sabir
,
M.
,
2009
, “
Adaptive Modified Function Projective Synchronization Between Hyperchaotic Lorenz System and Hyperchaotic Lü System With Uncertain Parameters
,”
Phys. Lett. A
,
373
(41), pp.
3743
3748
.10.1016/j.physleta.2009.08.027
18.
Sorrentino
,
F.
, and
Ott
,
E.
,
2008
, “
Adaptive Synchronization of Dynamics on Evolving Complex Networks
,”
Phys. Rev. Lett.
,
100
(11), p.
114101
.10.1103/PhysRevLett.100.114101
19.
Liang
,
X.
,
Zhang
,
J.
, and
Xia
,
X.
,
2008
, “
Adaptive Synchronization for Generalized Lorenz Systems
,”
IEEE Trans. Autom. Control.
,
53
, pp.
1740
1746
.10.1109/TAC.2008.928318
20.
Zhou
,
X.
,
Wu
,
Y.
,
Li
,
Y.
, and
Xue
,
H.
,
2011
, “
Adaptive Unknown-Input Observers-Based Synchronization of Chaotic Systems for Telecommunication
,”
IEEE Trans. Circuits Syst. I
,
58
(4), pp.
800
812
.10.1109/TCSI.2010.2089547
21.
Mahmoud
,
G.
, and
Bountis
,
T.
,
2004
, “
The Dynamics of Systems of Complex Nonlinear Oscillators: A Review
,”
Int. J. Bifurcation Chaos
,
14
(11), pp.
3821
3822
.10.1142/S0218127404011624
22.
Mahmoud
,
G.
,
Al-Kashif
,
M.
, and
Farghaly
,
A.
,
2008
, “
Chaotic and Hyperchaotic Attractors of a Complex Nonlinear System
,”
J. Phys. A: Math. Theor.
,
41
(5), pp.
055104
055114
.10.1088/1751-8113/41/5/055104
23.
Liu
,
P.
, and
Liu
,
S.
,
2011
, “
Anti-Synchronization Between Different Chaotic Complex Systems
,”
Phys. Scr.
,
83
(6), p.
065006
.10.1088/0031-8949/83/06/065006
24.
Mahmoud
,
G.
,
Bountis
,
T.
,
Abdel-Latif
,
G.
, and
Mahmoudb
,
E.
,
2008
, “
Chaos Synchronization of Two Different Chaotic Complex Chen and Lü Systems
,”
Nonlinear Dyn.
,
55
(1–2), pp.
43
53
.10.1007/s11071-008-9343-5
25.
Liu
,
P.
, and
Liu
,
S.
,
2012
, “
Robust Adaptive Full State Hybrid Synchronization of Chaotic Complex Systems With Unknown Parameters and External Disturbances
,”
Nonlinear Dyn.
,
70
(1), pp.
585
599
.10.1007/s11071-012-0479-y
26.
Mahmoud
,
G.
,
Ahmed
,
M.
, and
Mahmoudb
,
E.
,
2008
, “
Analysis of Hyperchaotic Complex Lorenz Systems
,”
Int. J. Mod. Phys. C
,
19
(10), pp.
1477
1494
.10.1142/S0129183108013151
27.
Mahmoud
,
G.
,
Al-Kashif
,
M.
, and
Aly
,
S.
,
2007
, “
Basic Properties and Chaotic Synchronization of Complex Lorenz System
,”
Int. J. Mod. Phys. C
,
18
(2), pp.
253
265
.10.1142/S0129183107010425
28.
Mahmoud
,
G.
,
Mahmoudb
,
E.
, and
Mansour
,
E.
,
2009
, “
On the Hyperchaotic Complex Lü System
,”
Nonlinear Dyn.
,
58
(4), pp.
725
738
.10.1007/s11071-009-9513-0
29.
Mahmoud
,
G.
, and
Mahmoudb
,
E.
,
2010
, “
Synchronization and Control of Hyperchaotic Complex Lorenz System
,”
Math. Comput. Simul.
,
80
(12), pp.
2286
2296
.10.1016/j.matcom.2010.03.012
30.
Liu
,
S.
, and
Liu
,
P.
,
2011
, “
Adaptive Anti-Synchronization of Chaotic Complex Nonlinear Systems With Unknown Parameters
,”
Nonlinear Anal.: Real World Appl.
,
12
(6), pp.
3046
3055
.10.1016/j.nonrwa.2011.05.006
You do not currently have access to this content.