In this paper, the nonlinear vibration and chaotic motion of the axially moving current-conducting thin plate under external harmonic force in magnetic field is studied. Improved multiple-scale method is employed to derive the strongly nonlinear subharmonic resonance bifurcation-response equation of the strip thin plate in transverse magnetic field. By using the singularity theory, the corresponding transition variety and bifurcation, which contain two parameters of the universal unfolding for this nonlinear system, are obtained. Numerical simulations are carried out to plot the bifurcation diagrams, corresponding maximum Lyapunov exponent diagrams, and dynamical response diagrams with respect to the bifurcation parameters such as magnetic induction intensity, axial tension, external load, external excited frequency, and axial speed. The influences of different bifurcation parameters on period motion, period times motion, and chaotic motion behaviors of subharmonic resonance system are analyzed. The results show that the complex dynamic behaviors of resonance system can be controlled by changing the corresponding parameters.

References

References
1.
Moon
,
F. C.
, and
Pao
,
Y. H.
,
1968
, “
Magnetoelastic Buckling of a Thin Plate
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
53
58
.10.1115/1.3601173
2.
Lu
,
Q. S.
,
To
,
C. W. S.
, and
Huang
,
K. L.
,
1995
, “
Dynamic Stability and Bifurcation of an Alternating Load and Magnetic Field Excited Magnetoelastic Beam
,”
J. Sound Vib.
,
181
(
5
), pp.
873
891
.10.1006/jsvi.1995.0175
3.
Zhou
,
Y. H.
,
Gao
,
Y. W.
, and
Zheng
,
X. J.
,
2003
, “
Buckling and Post-Buckling Analysis for Magneto-Elastic-Plastic Ferromagnetic Beam-Plates With Unmovable Simple Supports
,”
Int. J. Solids Struct.
,
40
(
11
), pp.
2875
2887
.10.1016/S0020-7683(03)00079-9
4.
Zheng
,
X. J.
,
Zhang
,
J. P.
, and
Zhou
,
Y. H.
,
2005
, “
Dynamic Stability of a Cantilever Conductive Plate in Transverse Impulsive Magnetic Field
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2417
2430
.10.1016/j.ijsolstr.2004.09.016
5.
Pratiher
,
B.
, and
Dwivedy
,
S. K.
,
2007
, “
Parametric Instability of a Cantilever Beam With Magnetic Field and Periodic Axial Load
,”
J. Sound Vib.
,
305
(
4–5
), pp.
904
917
.10.1016/j.jsv.2007.04.039
6.
Pratiher
,
B.
,
2011
, “
Non-Linear Response of a Magneto-Elastic Translating Beam With Prismatic Joint for Higher Resonance Conditions
,”
Int. J. Non-Linear Mech.
,
46
(
5
), pp.
685
692
.10.1016/j.ijnonlinmec.2011.01.002
7.
Gao
,
Y. W.
, and
Xu
,
B.
,
2010
, “
Dynamic Behaviors of Conductive Circular Plate in Time-Varying Magnetic Fields
,”
Acta Mech. Solida Sin.
,
23
(
1
), pp.
66
76
.10.1016/S0894-9166(10)60008-0
8.
Chen
,
S. H.
, and
Huang
,
J. L.
,
2005
, “
On Internal Resonances of Nonlinear Vibration of Axially Moving Beams
,”
Acta Mech. Sin.
,
37
(
1
), pp.
57
63
.10.3321/j.issn:0459-1879.2005.01.008
9.
Chen
,
S. H.
,
Huang
,
J. L.
, and
Sze
,
K. Y.
,
2007
, “
Multidimensional Lindstedt–Poincaré Method for Nonlinear Vibration of Axially Moving Beams
,”
J. Sound Vib.
,
306
(
1–2
), pp.
1
11
.10.1016/j.jsv.2007.05.038
10.
Chen
,
L. Q.
, and
Tang
,
Y. Q.
,
2011
, “
Combination and Principal Parametric Resonances of Axially Accelerating Viscoelastic Beams: Recognition of Longitudinally Varying Tensions
,”
J. Sound Vib.
,
330
(
23
), pp.
5598
5614
.10.1016/j.jsv.2011.07.012
11.
Chen
,
L. Q.
, and
Wu
,
J.
,
2005
, “
Bifurcation in Transverse Vibration of Axially Accelerating Viscoelastic Strings
,”
Acta Mech. Solida Sin.
,
26
(
1
), pp.
83
86
.10.3969/j.issn.0254-7805.2005.01.014
12.
Yao
,
M. H.
,
Zhang
,
W.
, and
Zu
,
J. W.
,
2012
, “
Multi-Pulse Chaotic Dynamics in Non-Planar Motion of Parametrically Excited Viscoelastic Moving Belt
,”
J. Sound Vib.
,
331
(
11
), pp.
2624
2653
.10.1016/j.jsv.2012.01.027
13.
Ghayesh
,
M. H.
,
2010
, “
Parametric Vibrations and Stability of an Axially Accelerating String Guided by a Non-Linear Elastic Foundation
,”
Int. J. Non-Linear Mech.
,
45
(
4
), pp.
382
394
.10.1016/j.ijnonlinmec.2009.12.011
14.
Ghayesh
,
M. H.
, and
Balar
,
S.
,
2008
, “
Non-Linear Parametric Vibration and Stability of Axially Moving Visco-Elastic Rayleigh Beams
,”
Int. J. Solids Struct.
,
45
(
25–26
), pp.
6451
6467
.10.1016/j.ijsolstr.2008.08.002
15.
Ghayesh
,
M. H.
, and
Balar
,
S.
,
2010
, “
Non-Linear Parametric Vibration and Stability Analysis for Two Dynamic Models of Axially Moving Timoshenko Beams
,”
Appl. Math. Modell.
,
34
(
10
), pp.
2850
2859
.10.1016/j.apm.2009.12.019
16.
Ghayesh
,
M. H.
,
2012
, “
Coupled Longitudinal–Transverse Dynamics of an Axially Accelerating Beam
,”
J. Sound Vib.
,
331
(
23
), pp.
5107
5124
.10.1016/j.jsv.2012.06.018
17.
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Non-Linear Global Dynamics of an Axially Moving Plate
,”
Int. J. Non-Linear Mech.
,
57
, pp.
16
30
.10.1016/j.ijnonlinmec.2013.06.005
18.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Païdoussis
,
M. P.
,
2013
, “
Nonlinear Dynamics of Axially Moving Plates
,”
J. Sound Vib.
,
332
(
2
), pp.
391
406
.10.1016/j.jsv.2012.08.013
19.
Holmes
,
P. J.
,
1981
, “
Center Manifolds, Normal Forms and Bifurcations of Vector Fields With Application to Coupling Between Periodic and Steady Motions
,”
Physica D
,
2
(
3
), pp.
449
481
.10.1016/0167-2789(81)90022-1
20.
Feng
,
Z. C.
, and
Sethna
,
P. R.
,
1993
, “
Global Bifurcations in the Motion of Parametrically Excited Thin Plate
,”
Nonlinear Dyn.
,
4
(
4
), pp.
389
408
.10.1007/BF00120673
21.
Kovacic
,
G.
, and
Wiggins
,
S.
,
1992
, “
Orbits Homoclinic to Resonance With an Application to Chaos in a Model of the Forced and Damped Sine-Gordon Equation
,”
Physica D
,
57
(
1–2
), pp.
185
225
.10.1016/0167-2789(92)90092-2
22.
Zhang
,
W.
,
2001
, “
Global and Chaotic Dynamics for a Parametrically Excited Thin Plate
,”
J. Sound Vib.
,
239
(
5
), pp.
1013
1036
.10.1006/jsvi.2000.3182
23.
Wang
,
Y. G.
, and
Xu
,
Z. S.
,
2007
, “
Chaotic Motion of Corrugated Circular Plates
,”
Tsinghua Sci. Technol.
,
12
(
5
), pp.
572
576
.10.1016/S1007-0214(07)70135-9
24.
Chen
,
S. H.
,
2004
,
Quantitative Method of Strongly Nonlinear Vibration
,
Guangdong Science and Technology Press
,
Guangzhou, China
.
25.
Xu
,
K. Y.
, and
Cheng
,
C. J.
,
1998
, “
The Subharmonic Bifurcation of a Viscoelastic Circular Cylindrical Shell
,”
Nonlinear Dyn.
,
17
(
2
), pp.
159
171
.10.1023/A:1008345127104
26.
Chen
,
F. Q.
,
Liang
,
J. S.
,
Chen
,
Y. S.
,
Liu
,
X. J.
, and
Ma
,
H. C.
,
2007
, “
Bifurcation Analysis of an Arch Structure With Parametric and Forced Excitation
,”
Mech. Res. Commun.
,
34
(
3
), pp.
213
221
.10.1016/j.mechrescom.2005.09.008
You do not currently have access to this content.