In the analysis of multibody system (MBS) dynamics, contact between two arbitrary rigid bodies is a fundamental feature in a variety of models. Many procedures have been proposed to solve the rigid body contact problem, most of which belong to one of the two categories: offline and online contact search methods. This investigation will focus on the development of a contact surface model for the rigid body contact problem in the case where an online three-dimensional nonconformal contact evaluation procedure, such as the elastic contact formulation—algebraic equations (ECF-A), is used. It is shown that the contact surface must have continuity in the second-order spatial derivatives when used in conjunction with ECF-A. Many of the existing surface models rely on direct linear interpolation of profile curves, which leads to first-order spatial derivative discontinuities. This, in turn, leads to erroneous spikes in the prediction of contact forces. To this end, an absolute nodal coordinate formulation (ANCF) thin plate surface model is developed in order to ensure second-order spatial derivative continuity to satisfy the requirements of the contact formulation used. A simple example of a railroad vehicle negotiating a turnout, which includes a variable cross-section rail, is tested for the cases of the new ANCF thin plate element surface, an existing ANCF thin plate element surface with first-order spatial derivative continuity, and the direct linear profile interpolation method. A comparison of the numerical results reveals the benefits of using the new ANCF surface geometry developed in this investigation.

References

References
1.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
,
2008
,
Railroad Vehicle Dynamics: A Computational Approach
,
CRC
,
Boca Raton
, FL.
2.
Kassa
,
E.
,
Andersson
,
C.
, and
Nielsen
,
J. C. O.
,
2006
, “
Simulation of Dynamic Interaction Between Train and Railway Turnout
,”
Veh. Syst. Dyn.
,
44
(
3
), pp.
247
258
.10.1080/00423110500233487
3.
Alfi
,
S.
, and
Bruni
,
S.
,
2009
, “
Mathematical Modelling of Train-Turnout Interaction
,”
Veh. Syst. Dyn.
,
47
(
5
), pp.
551
574
.10.1080/00423110802245015
4.
Sugiyama
,
H.
,
Tanii
,
Y.
, and
Matsumura
,
R.
,
2011
, “
Analysis of Wheel/Rail Contact Geometry on Railroad Turnout Using Longitudinal Interpolation of Rail Profiles
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
024501
.10.1115/1.4002342
5.
Sugiyama
,
H.
,
Sekiguchi
,
T.
,
Matsumura
,
R.
,
Yamashita
,
S.
, and
Suda
,
Y.
,
2012
, “
Wheel/Rail Contact Dynamics in Turnout Negotiations With Combined Nodal and Non-Conformal Contact Approach
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
55
74
.10.1007/s11044-011-9252-0
6.
Kassa
,
E.
, and
Nielsen
,
J. C. O.
,
2008
, “
Dynamic Interaction Between Train and Railway Turnout: Full-Scale Field Test and Validation of Simulation Models
,”
Veh. Syst. Dyn.
,
46
(
Supplement
), pp.
521
534
.10.1080/00423110801993144
7.
Schupp
,
G.
,
Weidemann
,
C.
, and
Mauer
,
L.
,
2004
, “
Modelling the Contact Between Wheel and Rail Within Multibody System Simulation
,”
Veh. Syst. Dyn.
,
41
(
5
), pp.
349
364
.10.1080/00423110412331300326
8.
Wan
,
C.
,
Markine
,
V. L.
, and
Shevtsov
,
I. Y.
,
2013
, “
Analysis of Train/Turnout Vertical Interaction Using a Fast Numerical Model and Validation of That Model
,”
Proc. Inst. Mech. Eng., Part F
, p. 0954409713489118.10.1177/0954409713489118
9.
Sinokrot
,
T.
,
Nakhaeinejad
,
M.
, and
Shabana
,
A. A.
,
2008
, “
A Velocity Transformation Method for the Nonlinear Dynamic Simulation of Railroad Vehicle Systems
,”
Nonlinear Dyn.
,
51
, pp.
289
307
.10.1007/s11071-007-9211-8
10.
Dmitrochenko
,
O.
, and
Pogorelov
,
D. Y.
,
2003
, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
, pp.
17
43
.10.1023/A:1024553708730
11.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
,
2nd ed.
,
Springer
,
New York
.
12.
SINTEF ICT: Applied Mathematics
,
2005
,
SISL: The SINTEF Spline Library Reference Manual
, Version 4.4. http://www.sintef.no/upload/IKT/9011/geometri/sisl/manual.pdf
13.
Gálvez
,
A.
, and
Iglesias
,
A.
,
2010
, “
Particle Swarm Optimization for Non-Uniform Rational B-Spline Surface Reconstruction From Clouds of 3D Data Points
,”
Inform. Sci.
,
192
, pp.
174
192
.10.1016/j.ins.2010.11.007
14.
Mikkola
,
A.
,
Shabana
,
A. A.
,
Sanchez-Rebollo
,
C.
, and
Jimenez-Octavio
,
J. R.
,
2012
, “
Comparison Between ANCF and B-Spline Surfaces
,”
Multibody Syst. Dyn.
,
30
,
119
138
.10.1007/s11044-013-9353-z
15.
Lan
,
P.
, and
Shabana
,
A. A.
,
2010
, “
Integration of B-Spline Geometry and ANCF Finite Element Analysis
,”
Nonlinear Dyn.
,
61
, pp.
193
206
.10.1007/s11071-009-9641-6
16.
Rathod
,
C.
,
Chamorro
,
R.
,
Escalona
,
J. L.
,
El-Sibaie
,
M.
, and
Shabana
,
A. A.
,
2009
, “
Validation of Three-Dimensional Multi-Body System Approach for Modelling Track Flexibility
,”
Proc. Inst. Mech. Eng.
, Part F,
223
, pp.
269
282
.10.1243/09576509JPE623
17.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
,
2nd ed.
,
Cambridge
,
Cambridge, UK
.
18.
Sinokrot
,
T.
,
2009
,
A New Method for Nonlinear Dynamic Modeling of Wheel/Rail Multiple Contacts
,
Doctoral dissertation, University of Illinois at Chicago
,
IL
.
19.
Shikin
,
E. V.
, and
Plis
,
A. I.
,
1995
,
Handbook on Splines for the User
,
CRC
,
Boca Raton
, FL.
20.
Jones
,
A. K.
,
1988
, “
Nonrectangular Surface Patches With Curvature Continuity
,”
Computer-Aid. Des.
,
20
(
6
), pp.
325
335
.10.1016/0010-4485(88)90114-5
21.
Melanz
,
D.
,
Khude
,
N.
,
Jayakumar
,
P.
,
Leatherwood
,
M.
, and
Negrut
,
D.
,
2012
, “
A GPU Parallelization of the Absolute Nodal Coordinate Formulation for Applications in Flexible Multibody Dynamics
,”
Proceedings of IDETC/CIE
,
Chicago, IL
, Aug. 12–15.
22.
Kreyszig
,
E.
,
1991
,
Differential Geometry
,
Dover
,
New York
.
23.
Kalker
,
J. J.
,
1990
,
Three-Dimensional Elastic Bodies in Rolling Contact
,
Kluwer
,
Dordrecht, Netherlands
.
24.
Vollebregt
,
E. A. H.
,
2008
, “
Survey of Programs on Contact Mechanics Developed by J.J. Kalker
,”
Veh. Syst. Dyn.
,
46
(
1
), pp.
85
92
.10.1080/00423110701586451
25.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
1988
,
Dynamics of Multibody Systems
,
Springer-Verlag
,
Berlin, Germany
.
26.
Shabana
,
A. A.
,
2010
,
Computational Dynamics
,
3rd ed.
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
27.
Shampine
,
L. F.
, and
Gordon
,
M. K.
,
1975
,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
W.H. Freeman
,
San Francisco, CA
.
You do not currently have access to this content.