The behavior of intrinsic localized modes (ILMs) is investigated for an array with N pendula which are connected with each other by weak, linear springs when the array is subjected to horizontal, sinusoidal excitation. In the theoretical analysis, van der Pol's method is employed to determine the expressions for the frequency response curves for fundamental harmonic oscillations. In the numerical calculations, the frequency response curves are presented for N = 2 and 3 and compared with the results of the numerical simulations. Patterns of oscillations are classified according to the stable steady-state solutions of the response curves, and the patterns in which ILMs appear are discussed in detail. The influence of the connecting springs of the pendula on the appearance of ILMs is examined. Increasing the values of the connecting spring constants may affect the excitation frequency range of ILMs and cause Hopf bifurcation to occur, followed by amplitude modulated motions (AMMs) including chaotic vibrations. The influence of the imperfections of the pendula on the system response is also investigated. Bifurcation sets are calculated to examine the influence of the system parameters on the excitation frequency range of ILMs and determine the threshold value for the connecting spring constant above which ILMs do not appear. Experiments were conducted for N = 2, and the data were compared with the theoretical results in order to confirm the validity of the theoretical analysis.

References

References
1.
Sievers
,
A. J.
, and
Takeno
,
S.
,
1988
, “
Intrinsic Localized Mode in Anharmonic Crystals
,”
Phys. Rev. Lett.
,
61
(
8
), pp.
970
973
.10.1103/PhysRevLett.61.970
2.
Flash
,
S.
, and
Willis
,
C. R.
,
1998
, “
Discrete Breathers
,”
Phys. Rep.
,
295
(
5
), pp.
181
264
.10.1016/S0370-1573(97)00068-9
3.
Campbell
,
D. K.
,
Flach
,
S.
, and
Kivshar
,
Y. S.
,
2004
, “
Localizing Energy Through Nonlinearity and Discreteness
,”
Phys. Today
,
57
(
1
), pp.
43
49
.10.1063/1.1650069
4.
Sato.
,
M.
,
Hubbard
,
B. E.
,
English
,
L. G.
, and
Sievers
,
A. J.
,
2003
, “
Study of Intrinsic Localized Vibrational Modes in Micromechanical Oscillator Arrays
,”
Chaos
,
13
(
2
), pp.
702
715
.10.1063/1.1540771
5.
Sato
,
M.
,
Hubbard
,
B. E.
,
Sievers
,
A. J.
,
Ilic
,
B.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
,
2003
, “
Observation of Locked Intrinsic Localized Vibrational Modes in a Micromechanical Oscillator Array
,”
Phys. Rev. Lett.
,
90
(
4
), p.
044102
.10.1103/PhysRevLett.90.044102
6.
Sato
,
M.
,
Hubbard
,
B. E.
, and
Sievers
,
A. J.
,
2006
, “
Nonlinear Energy Localization and Its Manipulation in Micromechanical Oscillator Arrays
,”
Rev. Mod. Phys.
,
78
(
1
), pp.
137
157
.10.1103/RevModPhys.78.137
7.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
, Jr.,
C. D.
,
2008
, “
Intrinsic Localized Modes in Microresonator Arrays and Their Relationship to Nonlinear Vibration Modes
,”
Nonlinear Dyn.
,
54
(
1–2
), pp.
13
29
.10.1007/s11071-007-9288-0
8.
Chen
,
Q.
,
Huang
,
L.
,
Lai
,
Y.-C.
, and
Dietz
,
D.
,
2009
, “
Dynamical Mechanism of Intrinsic Localized Modes in Microelectromechanical Oscillator Arrays
,”
Chaos
,
19
(
1
), p.
013127
.10.1063/1.3078706
9.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
, Jr.,
C. D.
,
2010
, “
Localization in Microresonator Arrays: Influence of Natural Frequency Tuning
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
11002
.10.1115/1.4000314
10.
Thakur
,
R. B.
,
English
,
L. Q.
, and
Sievers
,
A. J.
,
2008
, “
Driven Intrinsic Localized Modes in a Coupled Pendulum Array
,”
J. Phys. D: Appl. Phys.
,
41
(
1
), pp.
1
5
.10.1088/0022-3727/41/1/015503
11.
Kimura
,
M.
, and
Hikihara
,
T.
,
2008
, “
Stability Change of Intrinsic Localized Mode in Finite Nonlinear Coupled Oscillators
,”
Phys. Lett. A
,
372
(
25
), pp.
4592
4595
.10.1016/j.physleta.2008.04.054
12.
Kimura
,
M.
, and
Hikihara
,
T.
,
2009
, “
Coupled Cantilever Array With Tunable On-Site Nonlinearity and Observation of Localized Oscillations
,”
Phys. Lett. A
,
373
(
14
), pp.
1257
1260
.10.1016/j.physleta.2009.02.005
13.
Vakakis
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
265
282
.10.1137/0153016
14.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization
,”
Nonlinear Dyn.
,
7
(
1
), pp.
85
104
.10.1007/BF00045127
15.
Ramakrishnan
,
S.
, and
Balachandran
,
B.
,
2010
, “
Energy Localization and White Noise Induced Enhancement of Response in a Micro-scale Oscillator Array
,”
Nonlinear Dyn.
,
62
(
1–2
), pp.
1
16
.10.1007/s11071-010-9694-6
16.
Ikeda
,
T.
,
Harata
,
Y.
, and
Nishimura
,
K.
,
2013
, “
Intrinsic Localized Modes of Harmonic Oscillations in Nonlinear Oscillator Arrays
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041007
.10.1115/1.4023934
17.
Stoker
,
J. J.
,
2005
,
Nonlinear Vibrations
,
Wiley
,
NY
.
18.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
,
1997
,
Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont), AUTO97
,
Concordia University
,
Montreal, QC, Canada
.
19.
Brent
,
R. P.
,
1973
,
Algorithms for Minimization Without Derivatives
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 4.
20.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D, Nonlinear Phenomena
,
16
(
3
), pp.
285
317
.10.1016/0167-2789(85)90011-9
You do not currently have access to this content.