In this paper, the mineral wool fiberization process on a spinner wheel was studied by means of the nonlinear time series analysis. Melt film velocity time series was calculated using computer-aided visualization of the process images recorded with a high speed camera. The time series was used to reconstruct the state space of the process and was tested for stationarity, determinism, chaos, and recurrent properties. Mineral wool fiberization was determined to be a low-dimensional and nonstationary process. The 0–1 chaos test results suggest that the process is chaotic, while the determinism test indicates weak determinism.

References

References
1.
Taylor
,
G. I.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,”
Proc. R. Soc. London, Ser. A
,
201
(
1065
), pp.
192
196
.10.1098/rspa.1950.0052
2.
Eisenklam
,
P.
,
1964
, “
On Ligament Formation From Spinning Discs and Cups
,”
Chem. Eng. Sci.
,
19
(
9
), pp.
693
694
.10.1016/0009-2509(64)85056-9
3.
Hinze
,
J. O.
, and
Milborn
,
H.
,
1950
, “
Atomization of Liquids by Means of a Rotating Cup
,”
J. Appl. Mech.
,
17
(
2
), pp.
145
153
.
4.
Kamiya
,
T.
,
1972
, “
Analysis of the Ligament-Type Disintegration of Thin Liquid Film at the Edge of Rotating Disk
,”
J. Chem. Eng. Jpn.
,
5
(
4
), pp.
391
396
.10.1252/jcej.5.391
5.
Liu
,
J.
,
Yu
,
Q.
, and
Guo
,
Q.
,
2012
, “
Experimental Investigation of Liquid Disintegration by Rotary Cups
,”
Chem. Eng. Sci.
,
73
, pp.
44
50
.10.1016/j.ces.2012.01.010
6.
Westerlund
,
T.
, and
Hoikka
,
T.
,
1989
, “
On the Modeling of Mineral Fiber Formation
,”
Comput. Chem. Eng.
,
13
(
10
), pp.
1153
1163
.10.1016/0098-1354(89)87018-8
7.
Blagojević
B.
,
Širok
,
B.
, and
Štremfelj
,
B.
,
2004
, “
Simulation of the Effect of Melt Composition on Mineral Wool Fibre Thickness
,”
Ceramics - Silikáty
,
48
(
3
), pp.
128
134
.
8.
Širok
,
B.
Blagojević
,
B.
, and
Bullen
,
P.
,
2008
,
Mineral Wool: Production and Properties
,
Woodhead Publishing Limited
,
Cambridge, UK
.
9.
Širok
,
B.
,
Bizjan
,
B.
,
Orbanić
,
A.
, and
Bajcar
,
T.
,
2014
, “
Mineral Wool Melt Fiberization on a Spinner Wheel
,”
Chem. Eng. Res. Des.
,
92
(
1
), pp.
80
90
.10.1016/j.cherd.2013.06.014
10.
Kantz
,
H.
, and
Schreiber
,
T.
,
2004
,
Nonlinear Time Series Analysis;
Cambridge University Press
,
Cambridge, UK
.
11.
Bajcar
,
T.
,
Širok
,
B.
, and
Eberlinc
,
M.
,
2009
, “
Quantification of Flow Kinematics Using Computer-Aided Visualization
,”
J. Mech. Eng.
,
55
(
4
), pp.
215
223
.
12.
Brady
,
B. J.
,
1995
,
Mineral Physics & Crystallography: A Handbook of Physical Constants
,
American Geophysical Union
,
Washington, D.C
.
13.
Horn
,
B. K. R.
, and
Schunck
,
B. G.
,
1981
, “
Determining Optical Flow
,”
Artificial Intelligence
,
17
(
1–3
), pp.
185
204
.10.1016/0004-3702(81)90024-2
14.
Takens
,
F.
,
1981
, “
Detecting Strange Attractors in Turbulence
,”
Lecture Notes in Mathematics
,
898
, pp.
366
381
.10.1007/BFb0091903
15.
Sauer
,
T.
,
Yorke
,
J.
, and
Casdagli
,
M.
,
1991
, “
Embedology
,”
J. Stat. Phys.
,
65
(
3
), pp.
579
616
.10.1007/BF01053745
16.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
22
(
2
), pp.
1134
1140
.10.1103/PhysRevA.33.1134
17.
Abarbanel
,
H. D. I.
,
1996
,
Analysis of Observed Chaotic Data
,
Springer-Verlag
,
New York
.
18.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D. I.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.10.1103/PhysRevA.45.3403
19.
Schreiber
,
T.
,
1997
, “
Detecting and Analyzing Nonstationarity in a Time Series Using Nonlinear Cross Predictions
,”
Phys. Rev. Lett.
,
78
(
5
), pp.
843
846
.10.1103/PhysRevLett.78.843
20.
Kaplan
,
D. T.
, and
Glass
,
L.
,
1992
, “
Direct Test for Determinism in a Time Series
,”
Phys. Rev. Lett.
,
68
(
4
), pp.
427
430
.10.1103/PhysRevLett.68.427
21.
Krese
,
B.
,
Perc
,
M.
, and
Govekar
,
E.
,
2010
, “
The Dynamics of Laser Droplet Generation
,”
Chaos
,
20
(
1
), p.
013129
.10.1063/1.3367772
22.
Bradley
,
E.
, and
Mantilla
,
R.
,
2002
, “
Recurrence Plots and Unstable Periodic Orbits
,”
Chaos
,
12
(
3
), pp.
596
600
.10.1063/1.1488255
23.
Krese
,
B.
, and
Govekar
,
E.
,
2011
, “
Recurrence Quantification Analysis of Intermittent Spontaneous to Forced Dripping Transition in Laser Droplet Generation
,”
Chaos
,
44
(
5
), pp.
298
305
.
24.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5
), pp.
237
329
.10.1016/j.physrep.2006.11.001
25.
Zbilut
,
J. P.
,
Zaldivar-Comenges
,
J.-M.
, and
Strozzi
,
F.
,
2002
, “
Recurrence Quantification Based Lyapunov Exponents for Monitoring Divergence in Experimental Data
,”
Phys. Lett. A
,
297
(
3–4
), pp.
173
181
.10.1016/S0375-9601(02)00436-X
26.
Gottwald
,
G. A.
, and
Melbourne
,
I.
,
2004
, “
A New Test for Chaos in Deterministic Systems
,”
Proc. R. Soc. London, Ser. A
,
460
(
2042
), pp.
603
611
.10.1098/rspa.2003.1183
27.
Gottwald
,
G. A.
, and
Melbourne
,
I.
,
2009
, “
On the Implementation of the 0–1 Test for Chaos
,”
SIAM J. Appl. Dyn. Syst.
,
8
(
1
), pp.
129
145
.10.1137/080718851
28.
Krese
,
B.
, and
Govekar
,
E.
,
2012
, “
Nonlinear Analysis of Laser Droplet Generation by Means of 0–1 Test for Chaos
,”
Nonlinear Dyn.
,
67
(
3
), pp.
2101
2109
.10.1007/s11071-011-0132-1
You do not currently have access to this content.