The characterization of the elastodynamic behavior and natural frequencies of parallel robots is a crucial point. Accurate elastodynamic models of parallel robots are useful at both their design and control stages in order to define their optimal dimensions and shapes while improving their vibratory behavior. Several methods exist to write the elastodynamic model of manipulators. However, those methods do not provide a straightforward way to write the Jacobian matrices related to the kinematic constraints of parallel manipulators. Therefore, the subject of this paper is about a systematic method for the determination of the mass and stiffness matrices of any parallel robot in stationary configurations. The proposed method is used to express the mass and stiffness matrices of the Nantes Variable Actuation Robot (NaVARo), a three-degree-of-freedom (3DOF) planar parallel robot with variable actuation schemes, developed at IRCCyN. Then, its natural frequencies are evaluated and compared with those obtained from both Cast3m software and experimentally.

References

References
1.
Brogardh
,
T.
,
2007
, “
Present and Future Robot Control Development—An Industrial Perspective
,”
Annu. Rev. Control
,
31
(
1
), pp.
69
79
.10.1016/j.arcontrol.2007.01.002
2.
Chanal
,
H.
,
Duc
,
E.
, and
Ray
,
P.
,
2006
, “
A Study of the Impact of Machine Tool Structure on Machining Processes
,”
Int. J. Mach. Tools Manuf.
,
46
(
2
), pp.
98
106
,10.1016/j.ijmachtools.2005.05.004
3.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
,
2005
, “
Overatching Framework for Measuring the Closeness to Singularities of Parallel Manipulators
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1037
1045
.10.1109/TRO.2005.855993
4.
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Gogu
,
G.
,
2005
, “
New Approach for Dynamic Modelling of Flexible Manipulators
,”
Part K: J. Multi-Body Dyn.
,
219
(
3
), pp.
285
298
.10.1243/146441905X9890
5.
Briot
,
S.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2009
, “
On the Optimal Design of Parallel Robots Taking into Account Their Deformations and Natural Frequencies
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE
,
San Diego, CA
, Aug. 30–Sept. 2, pp.
367
376
.
6.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “Preshaping Command Inputs to Reduce System Vibration,”
ASME J. Dyn. Sys., Meas., Control
,
112
(1), pp. 76–82.10.1115/1.2894142
7.
Singh
,
T.
, and
Singhose
,
W. E.
,
2002
, “
Tutorial on Input Shaping/Time Delay Control of Maneuvering Flexible Structures
,”
American Control Conference
, Anchorage, AK, May 8–10, pp.
1717
1731
.10.1109/ACC.2002.1023813
8.
Pelaez
,
G.
,
Pelaez
,
Gu.
,
Perez
,
J. M.
,
Vizan
,
A.
, and
Bautista
,
E.
,
2005
, “
Input Shaping Reference Commands for Trajectory Following Cartesian Machines
,”
Control Eng. Pract.
,
13
(
8
), pp.
941
958
.10.1016/j.conengprac.2004.09.011
9.
Bouzgarrou
,
B. C.
,
Fauroux
,
J. C.
,
Gogu
,
G.
, and
Heerah
,
Y.
,
2004
, “
Rigidity Analysis of t3r1 Parallel Robot Uncoupled Kinematics
,”
Proceedings of the 35th International Symposium on Robotics
,
Paris, France
.
10.
Bettaieb
,
F.
,
Cosson
,
P.
, and
Hascoët
,
J.-Y.
,
2007
, “
Modeling of a High-Speed Machining Center With a Multibody Approach: The Dynamic Modeling of Flexible Manipulators
,”
Proceedings of the 6th International Conference on High Speed Machining
,
San Sebastian, Spain
.
11.
Shabana
,
A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
.
12.
Rognant
,
M.
,
Courteille
,
E.
, and
Maurine
,
P.
,
2010
, “
A Systematic Procedure for the Elastodynamic Modeling and Identification of Robot Manipulators
,”
IEEE Trans. Rob.
,
26
(
6
), pp.
1085
1093
.10.1109/TRO.2010.2066910
13.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
, Dordrecht, Heidelberg, London, New York.
14.
Cammarata
,
A.
,
Condorelli
,
D.
, and
Sinatra
,
R.
,
2013
, “
An Algorithm to Study the Elastodynamics of Parallel Kinematic Machines With Lower Kinematic Pairs
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011004
.10.1115/1.4007705
15.
Wittbrodt
,
E.
,
Adamiec-Wójcik
,
I.
, and
Wojciech
,
S.
,
2006
,
Dynamics of Flexible Multibody Systems
,
Springer-Verlag, Berlin, Heidelberg,
New York
.
16.
Ibrahim
,
O.
, and
Khalil
,
W.
,
2010
, “
Inverse and Direct Dynamic Models of Hybrid Robots
,”
Mech. Mach. Theory
,
45
(
4
), pp.
627
640
.10.1016/j.mechmachtheory.2009.11.007
17.
Rakotomanga
,
N.
,
Chablat
,
D.
, and
Caro
,
S.
, “
Kinetostatic Performance of a Planar Parallel Mechanism With Variable Actuation
,”
Advances in Robot Kinematics
,
Springer
, The Netherlands, pp.
311
320
.
18.
Caro
,
S.
,
Chablat
,
D.
,
Wenger
,
P.
, and
Kong
,
X.
,
2014
, “
Kinematic and Dynamic Modeling of a Parallel Manipulator With Eight Actuation Modes
,”
New Trends in Medical and Service Robots
,
Springer
, pp.
315
329
.10.1007/978-3-319-05431-5_21
19.
Castem3000. The Castem Software,
http:\\www-cast3m.cea.fr. Webpage accessed November
2012
.
20.
Boyer
,
F.
, and
Khalil
,
W.
,
1996
, “
Dynamics of a 3DOF Spatial Parallel Manipulator With Flexible Links
,”
IEEE
International Conference on Robotics and Automation, 1996. Proceedings of IEEE International Conference on, 1995
,
Nagoya
, May 21–27, pp.
627
633
.10.1109/ROBOT.1995.525354
21.
Blevins
,
R. D.
,
2001
, “Formulas for Natural Frequency and Mode Shape,”
ASME J. Appl. Mech.
,
47
(2), pp. 461–462.10.1115/1.3153712
22.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
966
982
.10.1016/j.mechmachtheory.2008.05.017
23.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification, and Control of Robots
,
Hermes Penton London
,
London, UK
.
24.
Arakelian
,
V.
,
Briot
,
S.
, and
Glazunov
,
V.
,
2008
, “
Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators Using Mechanisms of Variable Structure
,”
Mech. Mach. Theory
,
43
(
9
), pp.
1129
1140
.10.1016/j.mechmachtheory.2007.09.005
You do not currently have access to this content.