Modeling collision and contact accurately is essential to simulating many multibody systems. The three parameter Hunt–Crossley model is a continuous collision model for representing the contact dynamics of viscoelastic systems. By augmenting Hertz's elastic theory with a nonlinear damper, Hunt and Crossley captured part of the viscoelastic and velocity dependent behavior found in many systems. In the Hunt–Crossley model, the power parameter and the elastic coefficient can be related to the physical properties through Hertz's elastic theory but the damping coefficient cannot. Generally, the damping coefficient is related to an empirical measurement, the coefficient of restitution. Over the past few decades, several authors have posed relationships between the coefficient of restitution and the damping constant but key challenges remain. In the first portion of the paper, we derive an approximate expression for Stronge's (energetic) coefficient of restitution that has better accuracy for high velocities and low coefficient of restitution values than the published solutions based on Taylor series approximations. We present one method for selecting the model parameters from five empirical measurements using a genetic optimization routine. In the second portion of the paper, we investigate the application of the Hunt–Crossley model to an inhomogeneous system of a rubber covered aluminum sphere on a plate. Although this system does not fit the inclusion criteria for the Hunt–Crossley, it is representative of many systems of interest where authors have chosen the Hunt–Crossley model to represent the contact dynamics. The results show that a fitted model well predicts collision behavior at low values of the coefficient of restitution.

References

References
1.
Ruina
,
A.
,
Bertram
,
J. E.
, and
Srinivasan
,
M.
,
2005
, “
A Collisional Model of the Energetic Cost of Support Work Qualitatively Explains Leg Sequencing in Walking and Galloping, Pseudo-Elastic Leg Behavior in Running and the Walk-to-Run Transition
,”
J. Theor. Biol.
,
237
(
2
), pp.
170
192
.10.1016/j.jtbi.2005.04.004
2.
Kuo
,
A. D.
,
Donelan
,
J. M.
, and
Ruina
,
A.
,
2005
, “
Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions
,”
Exercise Sport Sci. Rev.
,
33
(
2
), pp.
88
97
.10.1097/00003677-200504000-00006
3.
Nichol
,
J. G.
,
Singh
,
S. P. N.
,
Waldron
,
K. J.
,
Palmer
,
L. R.
, and
Orin
,
D. E.
,
2004
, “
System Design of a Quadrupedal Galloping Machine
,”
Int. J. Rob. Res.
,
23
(
10–11
), pp.
1013
1027
.10.1177/0278364904047391
4.
Alexander
,
R. M.
,
Bennett
,
M. B.
, and
Ker
,
R. F.
,
1986
, “
Mechanical Properties and Function of the Paw Pads of Some Mammals
,”
J. Zool.
,
209
(
3
), pp.
405
419
.10.1111/j.1469-7998.1986.tb03601.x
5.
Raman
,
C. V.
,
1918
, “
The Photographic Study of Impact at Minimal Velocities
,”
Phys. Rev.
,
12
(
6
), pp.
442
447
.10.1103/PhysRev.12.442
6.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
,
1996
, “
A Critical Study of the Applicability of Rigid-Body Collision Theory
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
307
316
.10.1115/1.2788865
7.
Chatterjee
,
A.
, and
Ruina
,
A.
,
1997
, “
A New Algebraic Rigid Body Collision Model With Some Useful Properties
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
939
951
.10.1115/1.2791938
8.
Stronge
,
W. J.
,
1991
, “
Unraveling Paradoxical Theories for Rigid Body Collisions
,”
ASME J. Appl. Mech.
,
58
(
4
), pp.
1049
1055
.10.1115/1.2897681
9.
Wang
,
Y.
, and
Mason
,
M. T.
,
1992
, “
Two-Dimensional Rigid-Body Collisions With Friction
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
635
642
.10.1115/1.2893771
10.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.10.1115/1.3423596
11.
Yigit
,
A. S.
,
Christoforou
,
A. P.
, and
Majeed
,
M. A.
,
2011
, “
A Nonlinear Visco-Elastoplastic Impact Model and the Coefficient of Restitution
,”
Nonlinear Dyn.
,
66
(
4
), pp.
509
521
.10.1007/s11071-010-9929-6
12.
Ismail
,
K.
, and
Stronge
,
W.
,
2012
, “
Viscoplastic Analysis for Direct Impact of Sports Balls
,”
Int. J. Nonlinear Mech.
,
47
(
4
), pp.
16
21
.10.1016/j.ijnonlinmec.2012.02.007
13.
Aryaei
,
A.
,
Hashemnia
,
K.
, and
Jafarpur
,
K.
,
2010
, “
Experimental and Numerical Study of Ball Size Effect on Restitution Coefficient in Low Velocity Impacts
,”
Int. J. Impact Eng.
,
37
(
10
), pp.
1037
1044
.10.1016/j.ijimpeng.2010.04.005
14.
Jackson
,
R.
,
Green
,
I.
, and
Marghitu
,
D.
,
2010
, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
Nonlinear Dyn.
,
60
(
3
), pp.
217
229
.10.1007/s11071-009-9591-z
15.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.10.1115/1.1866166
16.
Seifried
,
R.
,
Minamoto
,
H.
, and
Eberhard
,
P.
,
2010
, “
Viscoplastic Effects Occurring in Impacts of Aluminum and Steel Bodies and Their Influence on the Coefficient of Restitution
,”
ASME J. Appl. Mech.
,
77
(
4
), p.
041008
.10.1115/1.4000912
17.
Zhang
,
X.
, and
Vu-Quoc
,
L.
,
2002
, “
Modeling the Dependence of the Coefficient of Restitution on the Impact Velocity in Elasto-Plastic Collisions
,”
Int. J. Impact Eng.
,
27
(
3
), pp.
317
341
.10.1016/S0734-743X(01)00052-5
18.
Wu
,
C.-Y.
,
Li
,
L.-Y.
, and
Thornton
,
C.
,
2005
, “
Energy Dissipation During Normal Impact of Elastic and Elastic–Plastic Spheres
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
593
604
.10.1016/j.ijimpeng.2005.08.007
19.
Zhang
,
Y.
, and
Sharf
,
I.
,
2009
, “
Validation of Nonlinear Viscoelastic Contact Force Models for Low Speed Impact
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051002
.10.1115/1.3112739
20.
Diolaiti
,
N.
,
Melchiorri
,
C.
, and
Stramigioli
,
S.
,
2005
, “
Contact Impedance Estimation for Robotic Systems
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
925
935
.10.1109/TRO.2005.852261
21.
Haddadi
,
A.
, and
Hashtrudi-Zaad
,
K.
,
2008
, “
A New Method for Online Parameter Estimation of Hunt–Crossley Environment Dynamic Models
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
981
986
.
22.
Yamamoto
,
T.
,
Vagvolgyi
,
B.
,
Balaji
,
K.
,
Whitcomb
,
L. L.
, and
Okamura
,
A. M.
,
2009
, “
Tissue Property Estimation and Graphical Display for Teleoperated Robot-Assisted Surgery
,”
IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
4239
4245
.
23.
Minamoto
,
H.
, and
Kawamura
,
S.
,
2011
, “
Moderately High Speed Impact of Two Identical Spheres
,”
Int. J. Impact Eng.
,
38
(
2–3
), pp.
123
129
.10.1016/j.ijimpeng.2010.09.005
24.
Tabor
,
D.
,
1948
, “
A Simple Theory of Static and Dynamic Hardness
,”
Proc. R. Soc. Lond. Ser. A
,
192
(
1029
), pp.
247
274
.10.1098/rspa.1948.0008
25.
Kuwabara
,
G.
, and
Kono
,
K.
,
1987
, “
Restitution Coefficient in a Collision Between Two Spheres
,”
Jpn. J. Appl. Phys.
,
26
(
Part 1, No. 8
), pp.
1230
1233
.10.1143/JJAP.26.1230
26.
Gugan
,
D.
,
2000
, “
Inelastic Collision and the Hertz Theory of Impact
,”
Am. J. Phys.
,
68
(
10
), pp.
920
924
.10.1119/1.1285850
27.
Zhang
,
Y.
, and
Sharf
,
I.
,
2011
, “
Force Reconstruction for Low Velocity Impacts Using Force and Acceleration Measurements
,”
J. Vib. Control
,
17
(
3
), pp.
407
420
.10.1177/1077546309354765
28.
Herbert
,
R. G.
, and
McWhannell
,
D. C.
,
1977
, “
Shape and Frequency Composition of Pulses From an Impact Pair
,”
ASME J. Manuf. Eng. Sci.
,
99
(
8
), pp.
513
518
.10.1115/1.3439270
29.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.10.1115/1.2912617
30.
Marhefka
,
D.
, and
Orin
,
D.
,
1999
, “
A Compliant Contact Model With Nonlinear Damping for Simulation of Robotic Systems
,”
IEEE Trans. Syst., Man Cybern., Part A
,
29
(
6
), pp.
566
572
.10.1109/3468.798060
31.
Gonthier
,
Y.
,
McPhee
,
J.
,
Lange
,
C.
, and
Piedbœuf
,
J.-C.
,
2004
, “
A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction
,”
Multibody Syst. Dyn.
,
11
(
3
), pp.
209
233
.10.1023/B:MUBO.0000029392.21648.bc
32.
Zhang
,
Y.
, and
Sharf
,
I.
,
2004
, “
Compliant Force Modelling for Impact Analysis
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Salt Lake City, UT, Sept. 28–Oct. 2, pp.
595
601
.
33.
Jacobs
,
D. A.
, and
Waldron
,
K. J.
,
2008
, “
A Nonlinear Model for Simulating Contact and Collision
,”
Advances in Mobile Robotics—Proceedings of the Eleventh International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
, Coimbra, Portugal, Sept. 8–10, pp.
930
936
.
34.
Stronge
,
W. J.
,
2004
,
Impact Mechanics
,
Cambridge University
,
Cambridge, UK
.
35.
Holland
,
J. H.
,
1992
, “
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,”
Complex Adaptive Systems
,
MIT Press
,
Cambridge, MA
.
36.
Carlos
,
C.
, and
Enrique
,
A.
,
2006
, “
Evolutionary Algorithms
,”
Handbook of Bioinspired Algorithms and Applications
,
Chapman & Hall/CRC Computer & Information Science Series, Chapman and Hall/CRC
,
Boca Raton, FL
.
37.
Cross
,
R.
,
1999
, “
The Bounce of a Ball
,”
Am. J. Phys.
,
67
(
3
), pp.
222
227
.10.1119/1.19229
You do not currently have access to this content.