In this paper, a new approach is suggested for asymptotic stabilization of a class of nonaffine quadratic polynomial systems in the presence of uncertainties. The designed controller is based on the sliding mode (SM) technique. This technique is basically introduced for nonlinear affine systems and in facing with nonaffine systems; attempts have been made to transform the system into an affine form. Lake of robustness is the main problem of the transformation approach. In this paper, a simple but effective idea is suggested to stabilize a system in its nonaffine structure and, therefore, a nonrobust transformation is not needed. In the proposed method, according to upper and lower bounds of uncertainties, two quadratic polynomials are constructed and with respect to the position of the roots of these polynomials, a new SM controller is proposed. This idea is also used for robust stabilization of a practical nonaffine quadratic polynomial system (magnetic ball levitation system). Computer simulations show the efficiency of the proposed control law.

References

References
1.
Bartoliniand
,
G.
, and
Punta
,
E.
,
2010
, “
Reduced-Order Observer in the Sliding- Mode Control of Nonlinear Nonaffine Systems
,”
IEEE Trans. Autom. Control
,
55
(
10
), pp.
2368
2373
.10.1109/TAC.2010.2053450
2.
Lane
,
S. H.
, and
Stengel
,
R. F.
,
1988
, “
Flight Control Design Using Nonlinear Inverse Dynamics
,”
Automatica
,
24
(
4
), pp.
471
483
.10.1016/0005-1098(88)90092-1
3.
Tombul
,
G. S.
,
Banks
,
S. P.
, and
Akturk
,
N.
,
2009
, “
Sliding Mode Control for a Class of Non-Affine Nonlinear Systems
,”
Nonlinear Anal.
,
71
(
12
), pp.
1589
1597
.10.1016/j.na.2009.01.238
4.
Chien
,
Y. H.
,
Wang
,
W. Y.
,
Leu
,
Y. G.
, and
Lee
,
T. T.
,
2011
, “
Robust Adaptive Controller Design for a Class of Uncertain Nonlinear Systems Using Online T-S Fuzzy-Neural Modelling Approach
,”
IEEE Trans. Syst., Man, Cybernetics B
,
41
(
2
), pp.
542
552
.10.1109/TSMCB.2010.2065801
5.
Labiod
,
S.
, and
Guerra
,
T. M.
,
2010
, “
Indirect Adaptive Fuzzy Control for a Class of Nonaffine Nonlinear Systems With Unknown Control Directions
,”
Int. J. Control, Automation, Syst.
,
8
(
4
), pp.
903
907
.10.1007/s12555-010-0425-z
6.
Gang
,
T. T.
,
Yang
,
J.
,
Gao
,
Q.
,
Zhao
,
Y.
, and
Qiu
,
J.
,
2012
, “
A Fuzzy Approach to Robust Control of Stochastic Non-Affine Nonlinear Systems
,”
Math. Probl. Eng.
,
2012
(
12
), p.
438805
.10.1155/2012/439805
7.
Wang
,
Z. W.
,
Chen
,
X.
, and
Huang
,
Y. S.
,
2013
, “
Decentralised Direct Adaptive Fuzzy Control for a Class of Large-Scale Non-Affine Nonlinear Systems and Application to AHS
,”
Int. J. Syst. Sci.
,
44
(
2
), pp.
321
328
.10.1080/00207721.2011.601344
8.
Boulkroune
,
A.
,
M'Saad
,
M.
, and
Farza
,
M.
,
2012
, “
Fuzzy Approximation-Based Indirect Adaptive Controller for Multi-Input Multi-Output Non-Affine Systems With Unknown Control Direction
IET Control Theory Appl.
,
6
(
15
), pp.
2619
2629
.10.1049/iet-cta.2012.0565
9.
Moulay
,
E.
, and
Perruquetti
,
W.
,
2005
, “
Stabilization of Nonaffine Systems: A Constructive Method for Polynomial Systems
,”
IEEE Trans. Autom. Control
,
50
(
4
), pp.
520
526
.10.1109/TAC.2005.844899
10.
Shiriaev
,
A. S.
, and
Fradkov
,
A. L.
,
2000
, “
Stabilization of Invariant Sets for Nonlinear Non-Affine Systems
,”
Automatica
,
6
(
11
), pp.
1709
1715
.10.1016/S0005-1098(00)00077-7
11.
Zhong
,
J.
,
Cheng
,
D.
, and
Hu
,
X.
,
2008
, “
Constructive Stabilization for Quadratic Input Nonlinear Systems
,”
Automatica
,
44
(
6
), pp.
1996
2005
.10.1016/j.automatica.2008.01.005
12.
Min
,
J.
,
Xu
,
Z.
, and
Fang
,
Y.
,
2008
, “
Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks
,”
Intell. Inform. Technol. Appl.
,
1
, pp.
716
720
.10.1109/IITA.2008.167
13.
Li
,
H. Y.
,
Hu
,
Y. A.
,
Ren
,
J. C.
, and
Zhu
,
M.
,
2012
, “
Dynamic Feedback Backstepping Control for a Class of MIMO Nonaffine Block Nonlinear Systems
,”
Math. Prob. Eng.
,
2012
(
2012
), p.
493715
.
14.
Khlil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
15.
Slotine
,
J. J.
, and
Li
,
W.
,
1987
,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
16.
De Carlo
,
R. A.
,
Zak
,
S. H.
, and
Drakunov
,
S. V.
,
1995
, “
Variable Structure, Sliding Mode Controller Design
,”
IEEE Control Engineering Handbook
,
CRC Press
,
Boca Raton, FL
, pp.
941
951
.
17.
Gutierrez
,
H. M.
, and
Ro
,
P. I.
,
2005
, “
Magnetic Servo Levitation by Sliding-Mode Control of Nonaffine Systems With Algebraic Input Invertibility
,”
IEEE Trans. Industrial Electron.
,
52
(
5
), pp.
1449
1455
.10.1109/TIE.2005.855651
18.
Hung
,
L. S.
,
Chou
,
T.-M.
, and
Lin
,
S. C.
,
1997
, “
Multivariable Sliding Mode Control for Nonlinear Magnetic Suspension Systems
,”
Proc. Nat. Sci. Council
,
21
(
4
), pp.
346
354
.
19.
Bonivento
,
C.
,
Gentili
,
L.
,
Marconi
,
L.
, and
Naldi
,
R.
,
2003
, “
Robust Regulation for a Magnetic Levitation System
,”
Proceedings of the 42nd IEEE Conference on Decision and Control
, Vol.
5
, pp.
4499
4504
.
20.
Shen
,
J. C.
,
2002
, “
H∞ Control and Sliding Mode Control of Magnetic Levitation System
,”
Asian J. Control
,
4
(
3
), pp.
333
340
.10.1111/j.1934-6093.2002.tb00361.x
You do not currently have access to this content.