This paper presents a multiscale dynamic model for the simulation and analysis of flexibility in myosin V. A 3D finite segment model, a multirigid body model connected with torsional springs, is developed to mechanically model the biological structure of myosin V. The long simulation run time is one of the most important issues in the dynamic modeling of biomolecules and proteins due to the disproportionality between the physical parameters involved in their dynamics. In order to address this issue, the most-used models, based on the famous overdamped Langevin equation, omit the inertial terms in the equations of motion; that leads to a first order model that is inconsistent with Newton's second law. However, the proposed model uses the concept of the method of multiple scales (MMS) that brings all of the terms of the equations of motion into proportion with each other; that helps to retain the inertia terms. This keeps the consistency of the model with the physical laws and experimental observations. In addition, the numerical integration's step size can be increased from commonly used subfemtoseconds to submilliseconds. Therefore, the simulation run time is significantly reduced in comparison with other approaches. The simulation results obtained by the proposed multiscale model show a dynamic behavior of myosin V which is more consistent with experimental observations in comparison with other overdamped models.

References

References
1.
Korten
,
T.
,
Mansson
,
A.
, and
Diez
,
S.
,
2010
, “
Towards the Application of Cytoskeletal Motor Proteins in Molecular Detection and Diagnostic Devices
,”
Curr. Opin. Biotechnol.
,
21
(
4
), pp.
477
488
.10.1016/j.copbio.2010.05.001
2.
Agarwal
,
A.
and
Hess
,
H.
,
2010
, “
Biomolecular Motors at the Intersection of Nanotechnology and Polymer Science
,”
Prog. Polym. Sci.
,
35
(
1–2
), pp.
252
277
.10.1016/j.progpolymsci.2009.10.007
3.
Block
,
S. M.
,
2007
, “
Kinesin Motor Mechanics: Binding, Stepping, Tracking, Gating, and Limping
,”
Biophys. J.
,
92
(
9
), pp.
2986
2995
.10.1529/biophysj.106.100677
4.
Vale
,
R. D.
,
Spudich
,
J. A.
, and
Griffis
,
E. R.
,
2009
, “
Dynamics of Myosin, Microtubules, and Kinesin-6 at the Cortex During Cytokinesis in Drosophila S2 Cells
,”
J. Cell Biol.
,
186
(
5
), pp.
727
738
.10.1083/jcb.200902083
5.
Walker
,
M. L.
,
Burgess
,
S. A.
,
Sellers
,
J. R.
,
Wang
,
F.
,
Hammer
,
J. A.
,
Trinick
,
J.
, and
Knight
,
P. J.
,
2000
, “
Two-Headed Binding of a Processive Myosin to F-Actin
,”
Nature (London)
,
405
(
6788
), pp.
804
807
.10.1038/35015592
6.
Parker
,
D.
,
Bryant
,
Z.
, and
Delp
,
S. L.
,
2009
, “
Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics
,”
Cell. Mol. Bioeng.
,
2
(
3
), pp.
366
374
.10.1007/s12195-009-0084-4
7.
Fisher
,
M. E.
and
Kolomeisky
,
A. B.
,
2001
, “
Simple Mechanochemistry Describes the Dynamics of Kinesin Molecules
,”
Proc. Natl. Acad. Sci. (U.S.A.)
,
98
(
14
), pp.
7748
7753
.10.1073/pnas.141080498
8.
Kolomeisky
,
A. B.
and
Fisher
,
M. E.
,
2007
, “
Molecular Motors: A Theorist's Perspective
,
Annu. Rev. Phys. Chem.
,
58
, pp.
675
695
.10.1146/annurev.physchem.58.032806.104532
9.
Ciudad
,
A.
,
Sancho
,
J. M.
, and
Tsironis
,
G. P.
,
2006
, “
Kinesin as an Electrostatic Machine
,”
J. Biol. Phys.
,
32
(
5
), pp.
455
463
.10.1007/s10867-006-9028-6
10.
Craig
,
E. M.
and
Linke
,
H.
,
2009
, “
Mechanochemical Model for Myosin V
,”
Proc. Natl. Acad. Sci. (U.S.A.)
,
106
(
43
), pp.
18261
18266
.10.1073/pnas.0908192106
11.
Rafii-Tabar
,
H.
,
Jamali
,
Y.
, and
Lohrasebi
,
A.
,
2007
, “
Computational Modelling of the Stochastic Dynamics of Kinesin Biomolecular Motors
,”
Physica A
,
381
, pp.
239
254
.10.1016/j.physa.2007.03.022
12.
Bowling
,
A.
and
Palmer
,
A. F.
,
2009
, “
The Small Mass Assumption Applied to the Multibody Dynamics of Motor Proteins
,”
J. Biomech.
,
42
(
9
), pp.
1218
1223
.10.1016/j.jbiomech.2009.03.017
13.
Bowling
,
A.
,
Palmer
,
A. F.
, and
Wilhelm
,
L.
,
2009
, “
Contact and Impact in the Multibody Dynamics of Motor Protein Locomotion
,”
Langmuir
,
25
(
22
), pp.
12974
12981
.10.1021/la901812k
14.
Bowling
,
A.
and
Haghshenas-Jaryani
,
M.
,
2010
, “
Spatial Multibody Dynamics of Nano-Scale Motor Protein Locomotion
,”
Proceedings of the 1st International Conference on Bionics and Biomechanics (ICABB)
,
Venice, Italy
.
15.
Haghshenas-Jaryani
,
M.
and
Bowling
,
A.
,
2011
, “
Spatial Multibody Dynamics of Motor Proteins
,”
Proceedings of Multibody Dynamics 2011, an ECCOMAS Thematic Conference
.
16.
Haghshenas-Jaryani
,
M.
and
Bowling
,
A.
,
2011
, “
Multiscale Dynamic Modeling of Processive Motor Proteins
,”
Proceedings of the IEEE International Conference Robotics and Biomimetics (ROBIO)
, pp.
1403
1408
.
17.
Chu
,
J. W.
,
Ayton
,
G. S.
,
Izvekov
,
S.
, and
Voth
,
G. A.
,
2007
, “
Emerging Methods for Multiscale Simulation of Biomolecular Systems
,”
Mol. Phys.
,
105
(
2–3
), pp.
167
175
.10.1080/00268970701256696
18.
Ayton
,
G. S.
,
Noid
,
W. G.
, and
Voth
,
G. A.
,
2007
, “
Multiscale Modeling of Biomolecular Systems: In Serial and in Parallel
,”
Curr. Opin. Struct. Biol.
,
17
(
2
), pp.
192
198
.10.1016/j.sbi.2007.03.004
19.
Anderson
,
K.
,
Poursina
,
M.
, and
Bhalerao
,
K. D.
,
2010
, “
On Adaptive Multiscale Modeling of Biomolecular Systems With Application in RNA
,”
Proceedings of the Joint International Conference on Multibody System Dynamics
.
20.
Rudd
,
R. E.
and
Broughton
,
J. Q.
,
1998
, “
Coarse-Grained Molecular Dynamics and the Atomic Limit of Finite Elements
,”
Phys. Rev. B
,
58
(
10
), pp.
R5893
R5896
.10.1103/PhysRevB.58.R5893
21.
Mukherjee
,
R. M.
,
Crozier
,
P. S.
,
Plimpton
,
S. J.
, and
Anderson
,
K. S.
,
2008
, “
Substructured Molecular Dynamics Using Multibody Dynamics Algorithms
,”
Int. J. Nonlinear Mech.
,
43
(
10
), pp.
1040
1055
.10.1016/j.ijnonlinmec.2008.04.003
22.
Zheng
,
W.
,
2010
, “
Multiscale Modeling of Structural Dynamics Underlying Force Generation and Product Release in Actomyosin Complex
,”
Proteins
,
78
(
3
), pp.
638
660
.10.1002/prot.22594
23.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
.
John Wiley and Sons
,
New York
.
24.
Vilfan
,
A.
,
2009
, “
Five Models for Myosin V
,”
Front. Biosci.
,
14
, pp.
2269
2284
.10.2741/3378
25.
Chen
,
J. C.
and
Kim
,
A. S.
,
2004
, “
Brownian Dynamics, Molecular Dynamics, and Monte Carlo Modeling of Colloidal Systems
,”
Adv. Colloid Interface Sci.
,
112
(
1–3
), pp.
159
173
.10.1016/j.cis.2004.10.001
26.
Lan
,
G.
and
Sun
,
S. X.
,
2005
, “
Dynamics of Myosin-V Processivity
,”
Biophys. J.
,
88
(
2
), pp.
999
1008
.10.1529/biophysj.104.047662
27.
Cheney
,
R.
,
O'Shea
,
M.
,
Heuser
,
J.
,
Coelho
,
M.
,
Wolenski
,
J.
,
Espreafico
,
E.
,
Forscher
,
P.
,
Larson
,
R.
, and
Mooseker
,
M.
,
1993
, “
Brain Myosin-V Is a Two-Headed Unconventional Myosin With Motor Activity
,”
Cell
,
75
(
1
), pp.
13
23
.10.1016/0092-8674(93)90675-G
28.
Terrak
,
M.
,
Rebowski
,
G.
,
Lu
,
R.
,
Grabarek
,
Z.
, and
Dominguez
,
R.
,
2005
, “
Structure of the Light Chain-Binding Domain of Myosin V
,”
Proc. Natl. Acad. Sci. (U.S.A.)
,
102
(
36
), pp.
12718
23
.10.1073/pnas.0503899102
29.
Vilfan
,
A.
,
2005
, “
Elastic Lever-Arm Model for Myosin V
,”
Biophys. J.
,
88
, pp.
3792
3805
.10.1529/biophysj.104.046763
30.
Haghshenas-Jaryani
,
M.
and
Bowling
,
A.
,
2012
, “
Multiscale Dynamic Modeling of Flexibility in Myosin V Using a Planar Mechanical Model
,”
Proceedings of the IEEE International Conference Robotics and Biomimetics (ROBIO)
, pp.
366
371
.
31.
Liu
,
J.
,
Taylor
,
D. W.
,
Krementsova
,
E. B.
,
Trybus
,
K. M.
, and
Taylor
,
K. A.
,
2006
, “
Three-Dimensional Structure of the Myosin V Inhibited State by Cryoelectron Tomography
,”
Nature (London)
,
442
(
13
), July, pp.
208
211
.10.1038/nature04719
32.
Haghshenas-Jaryani
,
M.
and
Bowling
,
A.
,
2013
, “
A New Switching Strategy for Addressing Euler Parameters in Dynamic Modeling and Simulation of Rigid Multibody Systems
,”
Multibody Syst. Dyn.
,
30
(
2
), pp.
185
197
.10.1007/s11044-012-9333-8
33.
Haghshenas-Jaryani
,
M.
and
Bowling
,
A.
,
2012
, “
A New Numerical Strategy for Handling Quaternions in Dynamic Modeling and Simulation of Rigid Multibody Systems
,”
Proceedings of the 2nd Joint International Conference on Multibody System Dynamics (IMSD)
.
34.
Lei
,
U.
,
Yang
,
C. Y.
, and
Wu
,
K. C.
,
2006
, “
Viscous Torque on a Sphere Under Arbitrary Rotation
,”
Appl. Phys. Lett.
,
89
(
18
), p.
181908
.10.1063/1.2372704
35.
Mather
,
W. H.
and
Fox
,
R. F.
,
2006
, “
Kinesin's Biased Stepping Mechanism: Amplification of Neck Linker Zippering
,”
Biophys. J.
,
91
(
7
), pp.
2416
2426
.10.1529/biophysj.106.087049
36.
Jamali
,
Y.
,
Lohrasebi
,
A.
, and
Rafii-Tabar
,
H.
,
2007
, “
Computational Modelling of the Stochastic Dynamics of Kinesin Biomolecular Motors
,”
Phys. A (Amsterdam, Neth.)
,
381
, pp.
239
254
.10.1016/j.physa.2007.03.022
37.
Bier
,
M.
,
2003
, “
Processive Motor Protein as an Overdamped Brownian Stepper
,”
Phys. Rev. Lett.
,
91
(
14
), p.
148104
.10.1103/PhysRevLett.91.148104
38.
Bier
,
M.
,
2005
, “
Modelling Processive Motor Proteins: Moving on Two Legs in the Microscopic Realm
,”
Contemp. Phys.
,
46
(
1
), pp.
41
51
.10.1080/001075104200027586
39.
Hayashi
,
K.
and
Takano
,
M.
,
2007
, “
Violation of the Fluctuation-Dissipation Theorem in a Protein System
,”
Biophys. J.
,
93
(
3
), pp.
895
901
.10.1529/biophysj.106.100487
40.
Reif
,
F.
,
1965
,
Fundamentals of Statistical and Thermal Physics
,
McGraw-Hill
,
New York
.
41.
Yu
,
J.
,
Ha
,
T.
, and
Schulten
,
K.
,
2006
, “
Structure-Based Model of the Stepping Motor of PcrA Helicase
,”
Biophys. J.
,
91
(
6
), pp.
2097
2114
.10.1529/biophysj.106.088203
42.
Zeldovich
,
K. B.
,
Joanny
,
J. F.
, and
Prost
,
J.
,
2005
, “
Motor Proteins Transporting Cargos
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
,
17
(
2
), pp.
155
163
.10.1140/epje/i2004-10137-6
43.
Wang
,
H.
and
Elston
,
T. C.
,
2007
, “
Mathematical and Computational Methods for Studying Energy Transduction in Protein Motors
,”
J. Stat. Phys.
,
128
(
1–2
), pp.
35
76
.10.1007/s10955-006-9169-9
44.
Sosa
,
H.
,
Peterman
,
E. J. G.
,
Moerner
,
W. E.
, and
Goldstein
,
L. S. B.
,
2001
, “
ADP-Induced Rocking of the Kinesin Motor Domain Revealed by Single-Molecule Fluorescence Polarization Microscopy
,”
Nat. Struct. Biol.
,
8
(
6
), pp.
540
544
.10.1038/88611
45.
Gapinski
,
J.
,
Szymanski
,
J.
Wilk
,
A.
,
Kohlbecher
,
J.
,
Patkowski
,
A.
, and
Holyst
,
R.
,
2010
, “
Size and Shape of Micelles Studied by Means of SANS, PCS, and FCS
,”
Langmuir
,
26
(
12
), pp.
9304
9314
.10.1021/la100181d
46.
Szymanski
,
J.
,
Patkowski
,
A.
,
Wilk
,
A.
,
Garstecki
,
P.
, and
Holyst
,
R.
,
2006
, “
Diffusion and Viscosity in a Crowded Environment: From Nano- to Macroscale
,”
Phys. Chem. Lett. B
,
110
, pp.
25593
25597
.10.1021/jp0666784
47.
Clemen
,
A.
,
Vilfan
,
M.
,
Jaud
,
J.
,
Zhang
,
J.
,
Barmann
,
M.
, and
Rief
,
M.
,
2005
, “
Force-Dependent Stepping Kinetics of Myosin-V
,”
Biophys. J.
,
88
, pp.
4402
4410
.10.1529/biophysj.104.053504
48.
Warshaw
,
D. M.
,
Kennedy
,
G. G.
,
Work
,
S. S.
,
Krementsova
,
E. B.
, and
Beck
,
S.
,
2005
, “
Differential Labeling of Myosin V Heads With Quantum Dots Allows Direct Visualization of Hand-Over-Hand Processivity
,”
Biophys. J.
,
88
(
5
), pp.
L30
L32
.10.1529/biophysj.105.061903
49.
Bueche
,
F. J.
,
1979
,
Introduction to Physics for Scientists and Engineers
,
Third ed.
,
McGraw-Hill
,
New York
.
50.
Pratt
,
C.
and
Cornely
,
K.
,
2004
,
Essential Biochemistry
,
John Wiley and Sons
,
New York
.
51.
Levin
,
Y.
,
2002
, “
Dynamics of Myosin-V Processivity
,”
Rep. Prog. Phys.
,
65
(
11
), pp.
1577
1632
.10.1088/0034-4885/65/11/201
You do not currently have access to this content.