Cable-driven parallel manipulator (CDPM) is a good solution to achieving large workspace. However, unavoidable vibrations of long cables can dramatically degrade the positioning performance in large workspace applications. Most work so far on cable-driven parallel manipulators (CDPMs) simply neglected the dynamics of the cables themselves. In this paper dynamic modeling of large CDPMs is addressed using a variable domain finite element method (FEM). A cable element with variable length is derived using the absolute nodal coordinate formulation to facilitate motion analysis of CDPMs. The effects of cable length variation and the resulting mass variation are also considered. Based on this element dynamics model of CDPMs can be readily obtained using the standard assembling operation in the FEM. Numerical results showed that the effect of the derivatives of cable length variation and that of the mass variation are trivial.

References

References
1.
Bostelman
,
R.
,
Shackleford
,
W.
,
Proctor
,
F.
,
Albus
,
J.
, and
Lytle
,
A.
,
2002
, “
The Flying Carpet: A Tool to Improve Ship Repair Efficiency
,”
Proceedings of the American Society of Naval Engineers Symposium on Manufacturing Technology for Ship Construction and Repair
, pp.
1
9
.
3.
Du
,
J. L.
,
Bao
,
H.
,
Cui
,
C. Z.
, and
Yang
,
D. W.
,
2012
, “
Dynamic Analysis of Cable-Driven Parallel Manipulators With Time-Varying Cable Lengths
,”
Finite Elem. Anal. Design
,
48
(
1
), pp.
1392
1399
.10.1016/j.finel.2011.08.012
4.
Meunier
,
G.
,
Boulet
,
B.
, and
Nahon
,
M.
,
2009
, “
Control of an Overactuated Cable-Driven Parallel Mechanism for a Radio Telescope Application
,”
IEEE T. Contr. Syst. T.
,
17
(
5
), pp.
1043
1054
.10.1109/TCST.2008.2004812
5.
Oh
,
S. R.
, and
Agrawal
,
S. K.
,
2005
, “
A Reference Governor Based Controller for a Cable Robot Under Input Constraints
,”
IEEE T. Contr. Syst. T.
,
13
(
4
), pp.
639
645
.10.1109/TCST.2004.841668
6.
Hassan
,
M.
, and
Khajepour
,
A.
,
2011
, “
Analysis of Bounded Cable Tensions in Cable-Actuated Parallel Manipulators
,”
IEEE T. Robot.
,
27
(
5
), pp.
891
900
.10.1109/TRO.2011.2158693
7.
Tabarrok
,
B.
,
Leech
,
C. M.
, and
Kim
,
Y. I.
,
1974
, “
On the Dynamics of an Axially Moving Beam
,”
J. Franklin Inst.
,
297
(
3
), pp.
201
220
.10.1016/0016-0032(74)90104-5
8.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
,
1989
, “
On the Energetics of Axially Moving Continua
,”
J. Acoust. Soc. Am.
,
85
(
3
), pp.
1365
1368
.10.1121/1.397418
9.
Lee
,
S. Y.
and
Mote
,
C. D.
, Jr.
,
1997
, “
A Generalized Treatment of the Energetics of Translating Continua, Part I: Strings and Second Order Tensioned Pipes
,”
J. Sound Vib.
,
204
(
5
), pp.
717
734
.10.1006/jsvi.1996.0945
10.
Mankala
,
K. K.
, and
Agrawal
S. K.
,
2005
, “
Dynamic Modeling and Simulation of Satellite Tethered Systems
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
144
156
.10.1115/1.1891811
11.
Zhu
,
W. D.
, and
Chen
,
Y.
,
2006
, “
Theoretical and Experimental Investigation of Elevator Cable Dynamics and Control
,”
ASME J. Vib. Acoust.
,
128
(
1
), pp.
66
78
.10.1115/1.2128640
12.
Wang
,
P. H.
,
Fung
,
R. F.
, and
Lee
,
M. J.
,
1998
, “
Finite Element Analysis of a Three-Dimensional Underwater Cable With Time-Dependent Length
,”
J. Sound Vib.
,
209
(
2
), pp.
223
249
.10.1006/jsvi.1997.1227
13.
Stylianou
,
M.
, and
Tabarrok
,
B.
,
1994
, “
Finite Element Analysis of an Axially Moving Beam, Part I: Time Integration
,”
J. Sound Vib.
,
178
(
4
), pp.
433
453
.10.1006/jsvi.1994.1497
14.
Chang
,
J. R.
,
Lin
,
W. J.
,
Huang
,
C. J.
, and
Choi
,
S. T.
,
2010
, “
Vibration and Stability of an Axially Moving Rayleigh Beam
,”
Appl. Math. Model.
,
34
(
6
), pp.
1482
1497
.10.1016/j.apm.2009.08.022
15.
Moustafa
,
K. A. F.
,
Gad
,
E. H.
,
El-Moneer
,
A. M. A.
, and
Ismail
,
M. I. S.
,
2005
, “
Modelling and Control of Overhead Cranes With Flexible Variable-Length Cable by Finite Element Method
,”
T. I. Meas. Control
,
27
(
1
), pp.
1
20
.10.1191/0142331205tm135oa
16.
Fung
,
R. F.
,
Lu
,
L. Y.
, and
Huang
,
S. C.
,
2002
, “
Dynamic Modelling and Vibration Analysis of a Flexible Cable-Stayed Beam Structure
,”
J. Sound Vib.
,
254
(
4
), pp.
717
726
.10.1006/jsvi.2001.4123
17.
Hong
,
D.
, and
Ren
,
G.
,
2011
, “
A Modeling of Sliding Joint on One-Dimensional Flexible Medium
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
91
106
.10.1007/s11044-010-9242-7
18.
Escalona
,
J. L.
,
2012
, “
Modeling Hoisting Machines With the Arbitrary Lagrangian-Eulerian Absolute Nodal Coordinate Formulation
,”
The 2nd Joint International Conference on Multibody System Dynamics
, pp.
281
282
.
19.
Dmitrochenko
,
O.
,
2008
, “
Finite Elements Using Absolute Nodal Coordinates for Large-Deformation Flexible Multibody Dynamics
,”
J. Comput. Appl. Math.
,
215
(
2
), pp.
368
377
.10.1016/j.cam.2006.04.063
20.
McIver
,
D. B.
,
1973
, “
Hamilton's Principle for Systems of Changing Mass
,”
J. Eng. Math.
,
7
(
3
), pp.
249
261
.10.1007/BF01535286
21.
Humer
,
A.
,
2013
, “
Dynamic Modeling of Beams With Non-Material, Deformation-Dependent Boundary Conditions
,”
J. Sound Vib.
,
332
(
3,4
), pp.
622
641
.10.1016/j.jsv.2012.08.026
You do not currently have access to this content.