Sensitivity analysis of multibody systems is essential for several applications, such as dynamics-based design optimization. Dynamic sensitivities, when needed, are often calculated by means of finite differences. This procedure is computationally expensive when the number of parameters is large, and numerical errors can severely limit its accuracy. This paper explores several analytical approaches to perform sensitivity analysis of multibody systems. Direct and adjoint sensitivity equations are developed in the context of Maggi's formulation of multibody dynamics equations. The approach can be generalized to other formulations of multibody dynamics as systems of ordinary differential equations (ODEs). The sensitivity equations are validated numerically against the third party code fatode and against finite difference solutions with real and complex perturbations.

References

References
1.
Brenan
,
K.
,
Campbell
,
S.
, and
Petzold
,
L.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland, New York
.
2.
Ascher
,
U.
, and
Petzold
,
L.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
Society for Industrial and Applied Mathematics
,
Philadelphia
, PA.
3.
Serna
,
M.
,
Aviles
,
R.
, and
García de Jalon
,
J.
,
1982
, “
Dynamic Analysis of Plane Mechanisms With Lower Pairs in Basic Coordinates
,”
Mech. Mach. Theory
,
17
(
6
), pp.
397
403
.10.1016/0094-114X(82)90032-5
4.
Wehage
,
R.
, and
Haug
,
E.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Mechanical Systems
,”
J. Mech. Des.
,
104
, pp.
247
255
.10.1115/1.3256318
5.
Garcia de Jalon
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer-Verlag
,
New York
.
6.
Haug
,
E. J.
, and
Arora
,
J. S.
,
1979
,
Applied Optimal Design: Mechanical and Structural Systems
,
Wiley
,
New York
.
7.
Cao
,
Y.
,
Li
,
S.
, and
Petzold
,
L.
,
2002
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: Algorithms and Software
,”
J. Comput. Appl. Math.
,
149
(
1
), pp.
171
191
.10.1016/S0377-0427(02)00528-9
8.
Cao
,
Y.
,
Li
,
S.
,
Petzold
,
L.
, and
Serban
,
R.
,
2003
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
1076
1089
.10.1137/S1064827501380630
9.
Chang
,
C. O.
, and
Nikravesh
,
P. E.
,
1985
, “
Optimal Design of Mechanical Systems With Constraint Violation Stabilization Method
,”
J. Mech., Trans. Autom. Des.
,
107
(
4
), pp.
493
498
.10.1115/1.3260751
10.
Haug
,
E.
,
1987
, “
Design Sensitivity Analysis of Dynamic Systems
,”
Computer Aided Optimal Design: Structural and Mechanical Systems
, (NATO ASI Series F: Computer and Systems Sciences),
Springer-Verlag
,
Berlin
.
11.
Bestle
,
D.
, and
Seybold
,
J.
,
1992
, “
Sensitivity Analysis of Constrained Multibody Systems
,”
Arch. Appl. Mech.
,
62
, pp.
181
190
.10.1007/BF00787958
12.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
Mech. Struct. Mach.
,
20
(
1
), pp.
67
92
.10.1080/08905459208905161
13.
Pagalday
,
J.
, and
Avello
,
A.
,
1997
, “
Optimization of Multibody Dynamics Using Object Oriented Programming and a Mixed Numerical-Symbolic Penalty Formulation
,”
Mech. Mach. Theory
,
32
(
2
), pp.
161
174
.10.1016/S0094-114X(96)00037-7
14.
Dias
,
J.
, and
Pereira
,
M.
,
1997
, “
Sensitivity Analysis of Rigid-Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
1
, pp.
303
322
.10.1023/A:1009790202712
15.
Feehery
,
W. F.
,
Tolsma
,
J. E.
, and
Barton
,
P. I.
,
1997
, “
Efficient Sensitivity Analysis of Large-Scale Differential-Algebraic Systems
,”
Appl. Numer. Math.
,
25
(
1
), pp.
41
54
.10.1016/S0168-9274(97)00050-0
16.
Anderson
,
K. S.
, and
Hsu
,
Y.
,
2002
, “
Analytical Fully-Recursive Sensitivity Analysis for Multibody Dynamic Chain Systems
,”
Multibody Syst. Dyn.
,
8
, pp.
1
27
.10.1023/A:1015867515213
17.
Anderson
,
K.
, and
Hsu
,
Y.
,
2004
, “
Order-(n+m) Direct Differentiation Determination of Design Sensitivity for Constrained Multibody Dynamic Systems
,”
Struct. Multidisc. Optim.
,
26
(
3-4
), pp.
171
182
.10.1007/s00158-003-0336-1
18.
Ding
,
J.-Y.
,
Pan
,
Z.-K.
, and
Chen
,
L.-Q.
,
2007
, “
Second Order Adjoint Sensitivity Analysis of Multibody Systems Described by Differential-Algebraic Equations
,”
Multibody Syst. Dyn.
,
18
, pp.
599
617
.10.1007/s11044-007-9080-4
19.
Schaffer
,
A.
,
2006
, “
Stabilized Index-1 Differential-Algebraic Formulations for Sensitivity Analysis of Multi-body Dynamics
,”
Proc. Inst. Mech. Eng., Part K
,
220
(
3
), pp.
141
156
.10.1243/1464419JMBD62
20.
Neto
,
M. A.
,
Ambrosio
,
J. A. C.
, and
Leal
,
R. P.
,
2009
, “
Sensitivity Analysis of Flexible Multibody Systems Using Composite Materials Components
,”
Int. J. Numer. Methods Eng.
,
77
(
3
), pp.
386
413
.10.1002/nme.2417
21.
Bhalerao
,
K.
,
Poursina
,
M.
, and
Anderson
,
K.
,
2010
, “
An Efficient Direct Differentiation Approach for Sensitivity Analysis of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
23
, pp.
121
140
.10.1007/s11044-009-9176-0
22.
Banerjee
,
J. M.
, and
McPhee
,
J.
,
2013
, “
Symbolic Sensitivity Analysis of Multibody Systems
,”
Multibody Dynamics. Computational Methods and Applications
, (Computational Methods in Applied Sciences), Vol.
28
,
Springer
,
New York
, pp.
123
146
.
23.
Zhang
,
H.
, and
Sandu
,
A.
,
2012
, “
fatode: A Library for Forward, Adjoint, and Tangent Linear Integration of ODEs
.” Available at: http://people.cs.vt.edu/asandu/Software/FATODE/index.html
24.
Garcia de Jalon
,
J.
,
Callejo
,
A.
, and
Hidalgo
,
A. F.
,
2011
, “
Efficient Solution of Maggi's Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), pp.
021003
.10.1115/1.4005238
25.
Bayo
,
E.
,
García de Jalon
,
J.
, and
Serna
,
M.
,
1988
, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
183
195
.10.1016/0045-7825(88)90085-0
You do not currently have access to this content.