Contemporary problem formulation methods used in the dynamic simulation of rigid bodies suffer from problems in accuracy, performance, and robustness. Significant allowances for parameter tuning, coupled with careful implementation of a broad-phase collision detection scheme are required to make dynamic simulation useful for practical applications. A constraint formulation method is presented herein that is more robust, and not dependent on broad-phase collision detection or system tuning for its behavior. Several uncomplicated benchmark examples are presented to give an analysis and make a comparison of the new polyhedral exact geometry (PEG) method with the well-known Stewart–Trinkle method. The behavior and performance for the two methods are discussed. This includes specific cases where contemporary methods fail to match theorized and observed system states in simulation, and how they are ameliorated by the new method presented here. The goal of this work is to complete the groundwork for further research into high performance simulation.

References

References
1.
Rahnejat
,
H.
,
1998
,
Multi-Body Dynamics: Vehicles, Machines, and Mechanisms, Professional Engineering
,
Wiley
,
New York
.
2.
Sinha
,
R.
,
Paredis
,
C.
,
Liang
, V
.
, and
Khosla
,
P.
,
2001
, “
Modeling and Simulation Methods for Design of Engineering Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
123
(
1
), pp.
84
91
.10.1115/1.1344877
3.
Flores
,
P.
,
Leine
,
R.
, and
Glocker
,
C.
,
2012
, “
Application of the Nonsmooth Dynamics Approach to Model and Analysis of the Contact-Impact Events in Cam-Follower Systems
,”
Nonlinear Dyn.
,
69
(
4
), pp.
2117
2133
.10.1007/s11071-012-0413-3
4.
Ma
,
Z.
, and
Perkins
,
N.
,
2003
, “
An Efficient Multibody Dynamics Model for Internal Combustion Engine Systems
,”
Multibody Syst. Dyn.
,
10
(
4
), pp.
363
391
.10.1023/A:1026276619456
5.
Chakraborty
,
N.
,
Berard
,
S.
,
Akella
,
S.
, and
Trinkle
,
J.
,
2008
, “
An Implicit Time-Stepping Method for Quasi-Rigid Multibody Systems With Intermittent Contact
,”
Proceedings of ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Las Vegas, NV, Sept. 4–7,
ASME
Vol.
5
, Part A, pp.
455
464
.10.1115/DETC2007-35526
6.
Sauer
,
J.
, and
Schömer
,
E.
,
1998
, “
A Constraint-Based Approach to Rigid Body Dynamics for Virtual Reality Applications
,”
Proceedings of the ACM Symposium on Virtual Reality Software and Technology
, ACM, pp.
153
162
.
7.
Coumans
,
E.
,
2013
, Bullet Physics Library. Available at: http://www.bulletphysics.com
8.
Lotstedt
,
P.
,
1981
, “
Coulomb Friction in Two-Dimensional Rigid Body Systems
,”
Z. Angew. Math. Mech.
,
61
(
12
), pp.
605
615
.10.1002/zamm.19810611202
9.
Schiehlen
,
W.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
149
188
.10.1023/A:1009745432698
10.
Mirtich
,
B.
,
1998
, “
V-clip: fast and robust polyhedral collision detection
,”
ACM Trans. Graph.
,
17
(
3
), pp.
177
208
.10.1145/285857.285860
11.
Jiménez
,
P.
,
Thomas
,
F.
, and
Torras
,
C.
,
2001
, “
3D Collision Detection: A Survey
,”
Comput. Graphics
,
25
(
2
), pp.
269
285
.10.1016/S0097-8493(00)00130-8
12.
Redon
,
S.
,
Kheddar
,
A.
, and
Coquillart
,
S.
,
2003
, “
Fast Continuous Collision Detection Between Rigid Bodies
,”
Computer Graphics Forum
, Vol.
21
, H. Rushmeier and O. Deussen eds., Eurographics Association and John Wiley & Sons Ltd., Geneve, Switzerland, Hoboken, NJ, pp.
279
287
.
13.
Trinkle
,
J. C.
,
Pang
,
J.-S.
,
Sudarsky
,
J.-S.
, and
Lo
,
G.
,
1997
, “
On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction
,”
Z. Angew. Math. Mech.
,
77
(
4
), pp.
267
279
.10.1002/zamm.19970770411
14.
Johansson
,
L.
,
1999
, “
Linear Complementarity Algorithm for Rigid Body Impact With Friction
,”
Eur. J. Mech., A
,
18
(
4
), pp.
703
717
.10.1016/S0997-7538(99)00119-9
15.
Baraff
,
D.
,
1994
, “
Fast Contact Force Computation for Nonpenetrating Rigid Bodies
,”
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques
, ACM, pp.
23
34
.
16.
Mirtich
,
B.
, and
Canny
,
J.
,
1995
, “
Impulse-Based Simulation of Rigid Bodies
,”
Proceedings of the Symposium on Interactive 3D graphics
, ACM, pp.
181
–ff.
17.
Anitescu
,
M.
, and
Potra
,
F. A.
,
1997
, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
,
14
, pp.
231
247
.10.1023/A:1008292328909
18.
Stewart
,
D.
, and
Trinkle
,
J.
,
1996
, “
An Implicit Time-Stepping Scheme for Rigid Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
,
39
(
15
), pp.
2673
2691
.10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
19.
Trinkle
,
J.
,
2003
, “
Formulations of Multibody Dynamics as Complementarity Problems
,” Proceedings of
ASME
International Design Engineering Technical Conferences.10.1115/DETC2003/VIB-48342
20.
Berard
,
S.
,
Trinkle
,
J.
,
Nguyen
,
B.
,
Roghani
,
B.
,
Fink
,
J.
, and
Kumar
,
V.
,
2007
, “
Davinci Code: A Multi-Model Simulation and Analysis Tool for Multi-Body Systems
,”
IEEE International Conference on Robotics and Automation
, IEEE, pp.
2588
2593
.
21.
Bajaj
,
C.
, and
Dey
,
T.
,
1992
, “
Convex Decomposition of Polyhedra and Robustness
,”
SIAM J. Comput.
,
21
(
2
), pp.
339
364
.10.1137/0221025
22.
Lien
,
J.
, and
Amato
,
N.
,
2007
, “
Approximate Convex Decomposition of Polyhedra
,”
Proceedings of the ACM symposium on Solid and Physical Modeling
, ACM, pp.
121
131
.
23.
Smith
,
R.
,
2013
, “
Open dynamics engine
.” Available at: www.ode.org
24.
Stewart
,
D.
, and
Trinkle
,
J.
,
2000
, “
Implicit Time-Stepping Scheme for Rigid Body Dynamics With Coulomb Friction
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
162
169
.
25.
Anitescu
,
M.
, and
Potra
,
F.
,
2002
, “
A Time-Stepping Method for Stiff Multibody Dynamics With Contact and Friction
,”
Int. J. Numer. Methods Eng.
,
55
(
7
), pp.
753
784
.10.1002/nme.512
26.
Nguyen
,
B.
,
2011
, “
Locally Non-Convex Contact Models and Solution Methods for Accurate Physical Simulation in Robotics
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York.
27.
Nguyen
,
B.
, and
Trinkle
,
J.
,
2010
, “
Modeling Non-Convex Configuration Space Using Linear Complementarity Problems
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
2316
2321
.
28.
Ferris
,
M.
, and
Munson
,
T.
,
2000
, “
Complementarity Problems in GAMS and the Path Solver
,”
J. Econ. Dyn. Control
,
24
(
2
), pp.
165
188
.10.1016/S0165-1889(98)00092-X
29.
Dirkse
,
S.
,
Ferris
,
M. C.
, and
Munson
,
T.
,
2013
, “
The Path Solver
.” Available at: pages.cs.wisc.edu/~ferris/path.html
30.
Williams
,
J.
,
Lu
,
Y.
,
Flickinger
,
D. M.
, and
Trinkle
,
J.
,
2013
, “
RPI Matlab Simulator
.” Available at: http://code.google.com/p/rpi-matlab-simulator/
You do not currently have access to this content.