The conservative and dissipative dynamics of a 2DOF, system composed of a grounded linear oscillator coupled to a lightweight mass by means of both strongly nonlinear and linear negative stiffnesses is investigated. Numerical studies are presented aiming to assess the influence of this combined coupling on the transient dynamics. In particular, these studies are focused on passive nonlinear targeted energy transfer from the impulsively excited linear oscillator to the nonlinear bistable lightweight attachment. It is shown that the main feature of the proposed configuration is the ability of assuring broadband efficient energy transfer over a broad range of input energy. Due to the bistability of the attachment, such favorable behavior is triggered by different nonlinear dynamic mechanisms depending on the energy level. For high energy levels, strongly modulated oscillations occur, and the dynamics is governed by fundamental (1:1) and superharmonic (1:3) resonances; for low energy levels, chaotic cross-well oscillations of the nonlinear attachment as well as subharmonic resonances lead to strong energy exchanges between the two oscillators. The results reported in this work indicate that properly designed attachments of this type can be efficient absorbers and dissipators of impulsively induced vibration energy.

References

References
1.
Manevitch
,
L. I.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2013
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(4), p.
041011
10.1115/1.4025150.
2.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II
,
Springer–Verlag
, Berlin and New York.
3.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Physica D
,
204
, pp.
41
69
.10.1016/j.physd.2005.03.014
4.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially-Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
, pp.
1693
1704
.10.1007/s11071-012-0379-1
5.
Gendelman
,
O. V.
, and
Lamarque
,
C. H.
,
2005
, “
Dynamics of Linear Oscillator Coupled to Nonlinear Attachment With Multiple States of Equilibrium
,”
Chaos, Solitons Fractals
,
24
, pp.
501
509
.10.1016/j.chaos.2004.09.088
6.
Avramov
,
K. V.
, and
Mikhlin
,
Yu. V.
,
2004
, “
Snap-Through Truss as a Vibration Absorber
,”
J. Vib. Control
,
10
, pp.
291
308
.10.1177/1077546304035604
7.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2006
, “
Snap-Through Truss as an Absorber of Forced Oscillations
,”
J. Sound Vib.
,
290
, pp.
705
722
.10.1016/j.jsv.2005.04.022
8.
Manevitch
,
L. I.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2007
, “
Towards the Design of an Optimal Energetic Sink in a Strongly Inhomogeneous Two-Degree-of-Freedom System
,”
ASME J. Appl. Mech.
,
74
(
6
), pp.
1078
1086
.10.1115/1.2711221
9.
Manevitch
,
L. I.
, and
Smirnov
,
V. V.
,
2010
, “
Limiting Phase Trajectories and the Origin of Energy Localization in Nonlinear Oscillatory Chains
,”
Phys. Rev. E
,
82
(
3
), p.
036602
.10.1103/PhysRevE.82.036602
10.
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P. O.
,
2006
, “
Experimental Evidence of Energy Pumping in Acoustics
,”
C. R. Méc.
,
334
, pp.
639
644
.10.1016/j.crme.2006.08.005
11.
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2005
, “
Energy Pumping With Various Nonlinear Structures: Numerical Evidences
,”
Nonlinear Dyn.
,
40
, pp.
281
307
.10.1007/s11071-005-6610-6
12.
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2006
, “
Nonlinear Energy Sinks With Uncertain Parameters
,”
ASME J. Comp. Nonlinear Dyn.
,
1
(3), pp.
187
195
.10.1115/1.2198213
13.
Gourdon
,
E.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Contribution to Efficiency of Irreversible Passive Energy Pumping With a Strong Nonlinear Attachment
,”
Nonlinear Dyn.
,
50
, pp.
793
808
.10.1007/s11071-007-9229-y
14.
Goyal
,
S.
, and
Whalen
,
T. M.
,
2005
, “
Design and Application of a Nonlinear Energy Sink to Mitigate Vibrations of an Air Spring Supported Slab
,” Paper DETC2005/VIB-85099, Proc. DETC05, Sept. 24–28, Long Beach, CA.
15.
Kozmin
,
A. Yu.
,
Mikhlin
,
Yu. V.
, and
Pierre
,
C.
,
2008
, “
Transient in a Two-DOF Nonlinear System
,”
Nonlinear Dyn.
,
51
, pp.
141
154
.10.1007/s11071-007-9198-1
16.
Felix
,
J. L. P.
,
Balthazar
,
J. M.
, and
Dantas
,
M. J. H.
,
2009
, “
On Energy Pumping, Synchronization and Beat Phenomenon in a Nonideal Structure Coupled to an Essentially Nonlinear Oscillator
,”
Nonlinear Dyn.
,
56
, pp.
1
11
.10.1007/s11071-008-9374-y
17.
Nguyen
,
T. A.
, and
Pernot
,
S.
,
2012
, “
Design Criteria for Optimally Tuned Nonlinear Energy Sinkspart 1: Transient Regime
,”
Nonlinear Dyn.
,
69
, pp.
1
19
.10.1007/s11071-011-0242-9
18.
Platus
,
D. L.
,
1991
, “
Negative-Stiffness-Mechanism Vibration Isolation Systems
,”
SPIE Vib. Control Microelectron., Opt. Metrol.
,
1619
, pp.
44
54
.10.1117/12.56823
19.
Mizuno
,
T.
,
Toumiya
,
T.
, and
Takasaki
,
M.
,
2003
, “
Vibration Isolation System Using Negative Stiffness
,”
JSME Int. J., Ser. C
,
46
(
3
), pp.
807
812
.10.1299/jsmec.46.807
20.
Lee
,
C. M.
,
Goverdovskiy
,
V. N.
, and
Temnikov
,
A. I.
,
2007
, “
Design of Springs With “Negative” Stiffness to Improve Vehicle Driver Vibration Isolation
,”
J. Sound Vib.
,
302
, pp.
865
874
.10.1016/j.jsv.2006.12.024
21.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
, pp.
678
689
.10.1016/j.jsv.2006.10.011
22.
Li
,
Q.
,
Zhu
,
Y.
,
Xu
,
D.
,
Hu
,
J.
,
Min
,
W.
, and
Pang
,
L.
,
2013
, “
Negative Stiffness Vibration Isolator Using Magnetic Spring Combined With Rubber Membrane
,”
J. Mech. Sci. Technol.
,
27
(
3
), pp.
813
824
.10.1007/s12206-013-0128-5
23.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2013
, “
Vibration isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
10.1016/j.jsv.2013.10.026.
24.
Shaw
,
A. D.
,
Neild
,
S. A.
,
Wagg
,
D. J.
,
Weaver
,
P. M.
, and
Carrella
,
A.
,
2013
, “
Nonlinear Spring Mechanism Incorporating a Bistable Composite Plate for Vibration Isolation
,”
J. Sound Vib.
,
332
, pp.
6265
-
6275
.10.1016/j.jsv.2013.07.016
25.
Theodossiades
,
S.
,
Liu
,
F.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2013
, “
Tailoring Strongly Nonlinear Negative Stiffness
,”
ASME J. Mech. Des.
,
136
(2), p.
024501
10.1115/1.4025794.
26.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
, p.
023001
.10.1088/0964-1726/22/2/023001
27.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
, pp.
2339
2353
.10.1016/j.jsv.2010.11.018
28.
Mann
,
B. P.
, and
Owens
,
B. A.
,
2010
, “
Investigations of a Nonlinear Energy Harvester With a Bistable Potential Well
,”
J. Sound Vib.
,
329
, pp.
1215
1226
.10.1016/j.jsv.2009.11.034
29.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
J. Vib. Acoust.
,
133
, p.
011007
.10.1115/1.4002786
30.
Arrieta
,
A. F.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
, p.
104102
.10.1063/1.3487780
31.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Relative Performance of a Vibratory Energy Harvester in Mono- and Bi-Stable Potentials
,”
J. Sound Vib.
,
330
, pp.
6036
6052
.10.1016/j.jsv.2011.07.031
32.
Peeters
,
M.
,
Vigui
,
R.
,
Srandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part II: Towards a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Sig. Process.
,
23
, pp.
195
216
.10.1016/j.ymssp.2008.04.003
33.
Manevitch
,
L. I.
,
1999
, “
Complex Representation of Dynamics of Coupled Oscillators
,”
Mathematical Models of Nonlinear Excitations, Transfer Dynamics and Control in Condensed Systems
, edited by A. L. Uvarova, A. E. Arinstein, A. V. Latyshev,
Kluwer Academic/Plenum Publishers
,
New York
,
269
300
.
34.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Alternation of Regular and Chaotic Dynamics in a Simple Two-Degree-of-Freedom System With Nonlinear Inertial Coupling
,”
Chaos
,
22
, p.
013118
.10.1063/1.3683480
35.
Lichtenberg
,
A. J.
, and
Lieberman
,
M. A.
,
1992
,
Regular and Chaotic Dynamics
,
Springer-Verlag
, New York.
You do not currently have access to this content.