Many processes are characterized by their oscillating or cyclic time behavior. This holds for rotating machines or alternating currents. The resulting signals are then periodic signals or contain periodic parts. It can be used for fault detection of rotating machines. In this paper, we studied the periodic time series of the superposition of two oscillations from the multifractal point of view. The wavelet transform modulus maxima method was used for the singularity spectrum computations. The results show that the width and the peak position of the singularity spectrum changed significantly when the amplitude, frequency, or the phase difference changed. So, the width and the peak position of the singularity spectrum can be used as a new measure for periodic signals.

References

References
1.
Tavner
,
P. J.
,
Gaydon
,
B. G.
, and
Word
,
D. M.
,
1986
, “
Monitoring Generators and Large Motors
,”
Electric Power Applications, IEE Proceedings B
,
133
(3), pp.
181
189
.10.1049/ip-b:19860024
2.
Douglas
,
H.
, and
Pillay
,
P.
,
2004
, “
A New Algorithm for Transient Motor Current Signature Analysis Using Wavelet
,”
IEEE Trans. Ind. Appl.
,
40
, pp.
1361
1368
.10.1109/TIA.2004.834130
3.
Poyhonen
,
S.
,
Jover
,
P.
, and
Hyotyniemi
,
H.
,
2004
, “
Signal Processing of Vibrations for Condition Monitoring of an Induction Motor
,”
First International Symposium on Control, Communications and Signal Processing
, pp.
499
502
.10.1109/ISCCSP.2004.1296338
4.
Guo
,
C.
,
Al-Shudeifat
,
M. A.
,
Yan
,
J.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Butcher
,
E. A.
,
2013
, “
Stability Analysis for Transverse Breathing Cracks in Rotor Systems
,”
Eur. J. Mech. A/Solids
,
42
, pp.
27
34
.10.1016/j.euromechsol.2013.04.001
5.
Al-Shudeifat
,
M. A.
, and
Butcher
,
E. A.
,
2011
, “
New Breathing Functions for the Transverse Breathing Crack of the Cracked Rotor System: Approach for Critical and Subcritical Harmonic Analysis
,”
J. Sound Vib.
,
330
, pp.
526
544
.10.1016/j.jsv.2010.08.022
6.
Al-Shudeifat
,
M. A.
,
Butcher
,
E. A.
, and
Stern
,
C. R.
,
2010
, “
General Harmonic Balance Solution of a Cracked Rotor-Bearing-Disk System for Harmonic and Sub-Harmonic Analysis: Analytical and Experimental Approach
,”
Int. J. Eng. Sci.
,
48
, pp.
921
935
.10.1016/j.ijengsci.2010.05.012
7.
Al-Shudeifat
,
M. A.
,
2013
, “
On the Finite Element Modeling of the Asymmetric Cracked Rotor
,”
J. Sound Vib.
,
332
, pp.
2795
2807
.10.1016/j.jsv.2012.12.026
8.
Darpe
,
A. K.
,
2007
, “
A Novel Way to Detect Transverse Surface Crack in a Rotating Shaft
,”
J. Sound Vib.
,
305
, pp.
151
171
.10.1016/j.jsv.2007.03.070
9.
Darpe
,
A. K.
,
Gupta
,
K.
, and
Chawla
,
A.
,
2004
, “
Coupled Bending, Longitudinal and Torsional Vibrations of a Cracked Rotor
,”
J. Sound Vib.
,
269
, pp.
33
60
.10.1016/S0022-460X(03)00003-8
10.
Darpe
,
A. K.
,
Gupta
,
K.
, and
Chawla
,
A.
,
2004
, “
Transient Response and Breathing Behaviour of a Cracked Jeffcott Rotor
,”
J. Sound Vib.
,
272
, pp.
207
243
.10.1016/S0022-460X(03)00327-4
11.
Sekhar
,
A. S.
, and
Prabhu
,
B. S.
,
1995
, “
Effects of Coupling Misalignment on Vibrations of Rotating Machinery
,”
J. Sound Vib.
,
185
, pp.
544
560
.10.1006/jsvi.1995.0407
12.
Sekhar
,
A. S.
,
1999
, “
Vibration Characteristics of a Cracked Rotor With Two Open Cracks
,”
J. Sound Vib.
,
223
, pp.
497
512
.10.1006/jsvi.1998.2120
13.
Guo
,
C.
,
Al-Shudeifat
,
M. A.
,
Yan
,
J.
,
Bergman
,
L. A.
,
McFarland
,
D. A.
, and
Butcher
,
E. A.
,
2013
, “
Application of Empirical Mode Decomposition to a Jeffcott Rotor With a Breathing Crack
,”
J. Sound Vib.
,
332
, pp.
3881
3892
.10.1016/j.jsv.2013.02.031
14.
Kantelhardt
,
J. W.
,
2009
, “
Fractal and Multifractal Time Series
,”
Encyclopedia of Complexity and Systems Science
,
A. M.
Robert
, ed.,
Springer
,
New York
, p.
3755
.
15.
Kolmogorov
,
A. N.
,
1941
, “
Dissipation of Energy in a Locally Isotropic Turbulence
,”
Dokl. Akad. Nauk. SSSR
,
32
, p.
141
.
16.
Figueirêdo
,
P. H.
,
Nogueira
,
E.
, Jr.
,
Moret
,
M. A.
, and
Countinho
,
S.
,
2010
, “
Multifractal Analysis of Polyalanines Time Series
,”
Phys. A
,
389
, pp.
2090
2095
.10.1016/j.physa.2009.11.045
17.
Benzi
,
R.
,
Paladin
,
G.
,
Paris
,
G.
, and
Vulpiani
,
A.
,
1984
, “
On the Multifractal Nature of Fully Developed Turbulence and Chaotic Systems
,”
J. Phys. A
,
17
, pp.
3521
3531
.10.1088/0305-4470/17/18/021
18.
Muzy
,
J. F.
,
Sornette
,
D.
,
Delour
,
J.
, and
Arnedo
,
A.
,
2001
, “
Multifractal Returns and Hierarchical Portfolio Theory
,”
Quant. Finance
,
1
,
p
. 131.10.1080/713665541
19.
Véhel
,
J. L.
, and
Riedi
,
R.
,
1997
, “
Fractional Brownian Motion and Data Traffic Modeling
,”
Fractals in Engineering
,
L. V.
Jacques
and
E.
Lutton
,
eds.
,
Springer
,
Berlin, Germany
, pp.
185
202
.
20.
Costa
,
M.
,
Goldberger
,
A. L.
, and
Peng
,
C. K.
,
2005
, “
Multiscale Entropy Analysis of Biological Signals
,”
Phys. Rev. E
,
71
, p.
021906
.10.1103/PhysRevE.71.021906
21.
Parisi
,
G.
, and
Frisch
,
U.
,
1985
, “
On the Singularity Structure of Fully Developed Turbulence and Predictability in Geophysical Fluid Dynamics
,”
Proceedings of the International School of Physics
,
E.
Fermi
,
M.
Ghil
,
R.
Benzi
, and
G.
Parisi
, eds.,
North-Holland
, Amsterdam, pp.
84
87
.
22.
Muzy
,
J. F.
,
Bacry
,
E.
, and
Arneodo
,
A.
,
1994
, “
The Multifractal Formalism Revisited With Wavelets
,”
Int. J. Bifurcation Chaos
,
4
, pp.
245
303
.10.1142/S0218127494000204
23.
Muzy
,
J. F.
,
Bacru
,
E.
, and
Arneodo
,
A.
,
1993
, “
Multifractal Formalism for Fractal Signals. The Structure Function Method Versus the Wavelet-Transform Modulus Maxima Method
,”
Phys. Rev. E
,
47
, pp.
875
884
.10.1103/PhysRevE.47.875
24.
Muzy
,
J. F.
,
Bacru
,
E.
, and
Arneodo
,
A.
,
1993
, “
Multifractal Formalism for Singular Signals Based on Wavelet Analysis
,”
Progress in Wavelet Analysis and Applications
,
M.
Yves
and
R.
Sylvie
, eds.,
Frontieres
,
France
, pp.
875
884
.
25.
Mallat
,
S.
, and
Zhong
,
S.
,
1992
, “
Characterization of Signals From Multiscale Edges
,”
IEEE Trans. Pattern Anal. Mach. Intelligence
,
14
, pp.
710
732
.10.1109/34.142909
26.
Muzy
,
J. F.
,
Bacry
,
E.
, and
Arneodo
,
A.
,
1991
, “
Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data
,”
Phys. Rev. Lett.
,
67
, pp.
3515
3518
.10.1103/PhysRevLett.67.3515
You do not currently have access to this content.