In this paper, we study the synchronization of a class of uncertain chaotic systems. Based on the sliding mode control and stability theory in fractional calculus, a new controller is designed to achieve synchronization. Examples are presented to illustrate the effectiveness of the proposed controller, like the synchronization between an integer-order system and a fraction-order system, the synchronization between two fractional-order hyperchaotic systems (FOHS) with nonidentical fractional orders, the antisynchronization between an integer-order system and a fraction-order system, the synchronization between two new nonautonomous systems. The simulation results are in good agreement with the theory analysis and it is noted that the proposed control method is of vital importance for practical system parameters are uncertain and imprecise.

References

References
1.
Pecora
,
L.
, and
Carroll
,
T.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
, pp.
821
824
.10.1103/PhysRevLett.64.821
2.
Li
,
Y. N.
,
Chen
,
L.
,
Cai
,
Z. S.
, and
Zhao
,
X. Z.
,
2004
, “
Experimental Study of Chaos Synchronization in the Belousov–Zhabotinsky Chemical System
,”
Chaos, Solitons Fractals
,
22
(4), pp.
767
771
.10.1016/j.chaos.2004.03.023
3.
Bai
,
E. W.
,
Lonngren
,
K. E.
, and
Sprott
,
J. C.
,
2002
, “
On the Synchronization of a Class of Electronic Circuits That Exhibit Chaos
,”
Chaos, Solitons Fractals
,
13
(7), pp.
1515
1521
.10.1016/S0960-0779(01)00160-6
4.
Matouk
,
A. E.
,
2011
, “
Chaos, Feedback Control and Synchronization of a Fractional-Order Modified Autonomous Van der Pol–Duffing Circuit
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(2), pp.
975
986
.10.1016/j.cnsns.2010.04.027
5.
Aqil
,
M.
,
Hong
,
K. S.
, and
Jeong
,
M. Y.
,
2012
, “
Synchronization of Coupled Chaotic FitzHugh–Nagumo Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(4), pp.
1615
1627
.10.1016/j.cnsns.2011.09.028
6.
Chen
,
D. Y.
,
Shi
,
P.
, and
Ma
,
X. Y.
,
2012
, “
Control and Synchronization of Chaos in an Induction Motor System
,”
Int. J. Innov. Comput. Inf.
,
8
(
10B
), pp.
7237
7248
.
7.
Juan
,
L. M.
,
Rafael
,
M. G.
,
Ricardo
,
A. L.
, and
Carlos
,
A. I.
,
2012
, “
A Chaotic System in Synchronization and Secure Communications
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(4), pp.
1706
1713
.10.1016/j.cnsns.2011.08.026
8.
Xie
,
Q. X.
,
Chen
,
G. R.
, and
Bollt
,
E. M.
,
2002
, “
Hybrid Chaos Synchronization and Its Application in Information Processing
,”
Math. Comput. Modell.
,
35
(1–2), pp.
145
163
.10.1016/S0895-7177(01)00157-1
9.
Song
,
Q.
,
Cao
,
J. D.
, and
Liu
,
F.
,
2012
, “
Pinning-Controlled Synchronization of Hybrid-Coupled Complex Dynamical Networks With Mixed Time-Delays
,”
Int. J. Robust Nonlinear Control
,
22
(6), pp.
690
706
.10.1002/rnc.1725
10.
Maurizio
,
P.
, and
Francesca
,
F.
,
2009
, “
Global Pulse Synchronization of Chaotic Oscillators Through Fast-Switching: Theory and Experiments
,”
Chaos, Solitons Fractals
,
41
(1), pp.
245
262
.10.1016/j.chaos.2007.11.033
11.
Zhu
,
Q. X.
, and
Cao
,
J. D.
,
2011
, “
Adaptive Synchronization Under Almost Every Initial Data for Stochastic Neural Networks With Time-Varying Delays and Distributed Delays
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(4), pp.
2139
2159
.10.1016/j.cnsns.2010.08.037
12.
Zhang
,
Z. Q.
,
Wang
,
Y. X.
, and
Du
,
Z. B.
,
2012
, “
Adaptive Synchronization of Single-Degree-of-Freedom Oscillators With Unknown Parameters
,”
Appl. Math. Comput.
,
218
(12), pp.
6833
6840
.10.1016/j.amc.2011.12.056
13.
Botmart
,
T.
,
Niamsup
,
P.
, and
Liu
,
X.
,
2012
, “
Synchronization of Non-Autonomous Chaotic Systems With Time-Varying Delay via Delayed Feedback Control
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
17
(4), pp.
1894
1907
.10.1016/j.cnsns.2011.07.038
14.
Chen
,
H. H.
,
Sheu
,
G. J.
,
Lin
,
Y. L.
, and
Chen
,
C. S.
,
2009
, “
Chaos Synchronization Between Two Different Chaotic Systems via Nonlinear Feedback Control
,”
Nonlinear Anal. Theory
,
70
(12), pp.
4393
4401
.10.1016/j.na.2008.10.069
15.
Li
,
S. Y.
, and
Ge
,
Z. M.
,
2011
, “
Generalized Synchronization of Chaotic Systems With Different Orders by Fuzzy Logic Constant Controller
,”
Expert Syst. Appl.
,
38
(3), pp.
2302
2310
.10.1016/j.eswa.2010.08.018
16.
Chen
,
D. Y.
,
Zhao
,
W. L.
,
Sprott
,
J. C.
, and
Ma
,
X. Y.
,
2013
, “
Application of Takagi-Sugeno Fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization
,”
Nonlinear Dyn.
,
73
(3), pp.
1495
1505
.10.1007/s11071-013-0880-1
17.
Chen
,
D. Y.
,
Shi
,
L.
,
Chen
,
H. T.
, and
Ma
,
X. Y.
,
2012
, “
Analysis and Control of a Hyperchaotic System With Only One Nonlinear Term
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1745
1752
.10.1007/s11071-011-0102-7
18.
Tang
,
R. A.
,
Liu
,
Y. L.
, and
Xue
,
J. K.
,
2009
, “
An Extended Active Control for Chaos Synchronization
,”
Phys. Lett. A
,
373
(16), pp.
1449
1454
.10.1016/j.physleta.2009.02.036
19.
Wang
,
Z.
, and
Huang
,
X.
,
2011
, “
Synchronization of a Chaotic Fractional Order Economical System With Active Control
,”
Procedia Eng.
,
15
, pp.
516
520
.10.1016/j.proeng.2011.08.098
20.
Chai
,
Y.
, and
Chen
,
L. Q.
,
2012
, “
Projective Lag Synchronization of Spatiotemporal Chaos via Active Sliding Mode Control
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
17
(8), pp.
3390
3398
.10.1016/j.cnsns.2011.12.011
21.
Chen
,
D. Y.
,
Zhang
,
R. F.
,
Ma
,
X. Y.
, and
Liu
,
S.
,
2012
, “
Chaotic Synchronization and Anti-Synchronization for a Novel Class of Multiple Chaotic Systems via a Sliding Mode Control Scheme
,”
Nonlinear Dyn.
,
69
(1–2), pp.
35
55
.10.1007/s11071-011-0244-7
22.
Chen
,
D. Y.
,
Zhang
,
R. F.
,
Sprott
,
J. C.
,
Chen
,
H. T.
, and
Ma
,
X. Y.
,
2012
, “
Synchronization Between Integer-Order Chaotic Systems and a Class of Fractional-Order Chaotic Systems via Sliding Mode Control
,”
Chaos
,
22
(2), p.
023130
.10.1063/1.4721996
23.
Hegazi
,
A. S.
, and
Matouk
,
A. E.
,
2011
, “
Dynamical Behaviors and Synchronization in the Fractional Order Hyperchaotic Chen System
,”
Appl. Math. Lett.
,
24
(11), pp.
1938
1944
.10.1016/j.aml.2011.05.025
24.
Yu
,
Y. G.
, and
Li
,
H. X.
,
2008
, “
The Synchronization of Fractional-Order Rössler Hyperchaotic Systems
,”
Phys. A
,
387
(5–6), pp.
1393
1403
.10.1016/j.physa.2007.10.052
25.
Xin
,
B. G.
,
Chen
,
T.
, and
Liu
,
Y. Q.
,
2011
, “
Projective Synchronization of Chaotic Fractional-Order Energy Resources Demand–Supply Systems via Linear Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(11), pp.
4479
4486
.10.1016/j.cnsns.2011.01.021
26.
Sachin
,
B.
, and
Varsha
,
D. G.
,
2010
, “
Synchronization of Different Fractional Order Chaotic Systems Using Active Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(11), pp.
3536
3546
.10.1016/j.cnsns.2009.12.016
27.
Aghababa
,
M. P.
,
2012
, “
Robust Stabilization and Synchronization of a Class of Fractional-Order Chaotic Systems via a Novel Fractional Sliding Mode Controller
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(6), pp.
2670
2681
.10.1016/j.cnsns.2011.10.028
28.
Chen
,
D. Y.
,
Zhang
,
R. F.
,
Sprott
,
J. C.
, and
Ma
,
X. Y.
,
2012
, “
Synchronization Between Integer-Order Chaotic Systems and a Class of Fractional-Order Chaotic System Based on Fuzzy Sliding Mode Control
,”
Nonlinear Dyn.
,
70
(2), pp.
1549
1561
.10.1007/s11071-012-0555-3
29.
Wu
,
X. J.
,
Li
,
J.
, and
Chen
,
G. R.
,
2008
, “
Chaos in the Fractional Order Unified System and Its Synchronization
,”
J. Franklin Inst.
,
345
(4), pp.
392
401
.10.1016/j.jfranklin.2007.11.003
30.
Suwat
,
K.
,
2012
, “
Robust Synchronization of Fractional-Order Unified Chaotic Systems via Linear Control
,”
Comput. Math. Appl.
,
63
(1), pp.
183
190
.10.1016/j.camwa.2011.11.007
31.
Bai
,
J.
,
Yu
,
Y.
,
Wang
,
S.
, and
Song
,
Y.
,
2012
, “
Modified Projective Synchronization of Uncertain Fractional Order Hyperchaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(4), pp.
1921
1928
.10.1016/j.cnsns.2011.09.031
32.
Hegazi
,
A. S.
,
Ahmed
,
E.
, and
Matouk
,
A. E.
,
2013
, “
On Chaos Control and Synchronization of the Commensurate Fractional Order Liu System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(5), pp.
1193
1202
.10.1016/j.cnsns.2012.09.026
33.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Comput. Eng. Syst. Appl.
,
2
, pp.
963
968
.10.1.1.40.4859
34.
Wang
,
Z. H.
,
Sun
,
Y. X.
,
Qi
,
G. Y.
, and
Wyk
,
B. J.
,
2010
, “
The Effects of Fractional Order on a 3-D Quadratic Autonomous System With Four-Wing Attractor
,”
Nonlinear Dyn.
,
62
(1–2), pp.
139
150
.10.1007/s11071-010-9705-7
35.
Sachin
,
B.
, and
Varsha
,
D. G.
,
2010
, “
Fractional Ordered Liu System With Time-Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(8), pp.
2178
2191
.10.1016/j.cnsns.2009.08.015
36.
Pan
,
L.
,
Zhou
,
W.
,
Zhou
,
L.
, and
Sun
,
K.
,
2011
, “
Chaos Synchronization Between Two Different Fractional-Order Hyperchaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(6), pp.
2628
2640
.10.1016/j.cnsns.2010.09.016
37.
Yu
,
Y. G.
,
Li
,
H. X.
,
Wang
,
S.
, and
Yu
,
J. Z.
,
2009
, “
Dynamic Analysis of a Fractional-Order Lorenz Chaotic System
,”
Chaos, Solitons Fractals
,
42
(2), pp.
1181
1189
.10.1016/j.chaos.2009.03.016
38.
Asheghan
,
M. M.
,
Beheshti
,
M. T. H.
, and
Tavazoei
,
M. S.
,
2011
, “
Robust Synchronization of Perturbed Chen's Fractional-Order Chaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(2), pp.
1044
1051
.10.1016/j.cnsns.2010.05.024
You do not currently have access to this content.