We study stationary periodic solutions of the Kuramoto-Sivashinsky (KS) model for complex spatio-temporal dynamics in the presence of an additional linear destabilizing term. In particular, we show the phase space origins of the previously observed stationary “viscous shocks” and related solutions. These arise in a reversible four-dimensional dynamical system as perturbed heteroclinic connections whose tails are joined through a reinjection mechanism due to the linear term. We present numerical evidence that the transition to the KS limit contains a rich bifurcation structure even within the class of stationary reversible solutions.

1.
Cross
,
M.
, and
Hohenberg
,
P.
, 1993, “
Pattern Formation Outside of Equilibrium
,”
Rev. Mod. Phys.
0034-6861,
65
, pp.
851
1112
.
2.
LaQuey
,
R.
,
Mahajan
,
S.
,
Rutherford
,
P.
, and
Tang
,
W.
, 1975, “
Nonlinear Saturation of the Trapped-Ion Mode
,”
Phys. Rev. Lett.
0031-9007,
34
, pp.
391
394
.
3.
Sivashinsky
,
G.
, 1977, “
Nonlinear Analysis of Hydrodynamic Instability in Laminar Flames—I. Derivation of Basic Equations
,”
Acta Astron.
0001-5237,
4
, pp.
1177
1206
.
4.
Kuramoto
,
Y.
, and
Tsuzuki
,
T.
, 1976, “
Persistent Propagation of Concentration Waves in Dissipative Media far From Thermal Equilibrium
,”
Prog. Theor. Phys.
0033-068X,
55
, pp.
356
369
.
5.
Misbah
,
C.
, and
Valance
,
A.
, 1994, “
Secondary Instabilities in the Stabilized Kuramoto-Sivashinsky Equation
,”
Phys. Rev. E
1063-651X,
49
, pp.
166
183
.
6.
Doelman
,
A.
,
Sandstede
,
B.
,
Scheel
,
A.
, and
Schneider
,
G.
, 2005, “
The Dynamics of Modulated Wave Trains
,” preprint.
7.
Wittenberg
,
R. W.
, and
Holmes
,
P.
, 1999, “
Scale and Space Localization in the Kuramoto-Sivashinsky Equation
,”
Chaos
1054-1500,
9
, pp.
452
465
.
8.
Wittenberg
,
R. W.
, and
Holmes
,
P.
, 2002, “
Spatially Localized Models of Extended Systems
,”
Nonlinear Dyn.
0924-090X,
25
, pp.
111
132
.
9.
Michelson
,
D.
, 1986, “
Steady Solutions of the Kuramoto-Sivashinsky Equation
,”
Physica D
0167-2789,
19
, pp.
89
111
.
10.
Kent
,
P.
, and
Elgin
,
J.
, 1992, “
Travelling-Waves of the Kuramoto-Sivashinsky Equation: Period-Multiplying Bifurcations
,”
Nonlinearity
0951-7715,
5
, pp.
899
919
.
11.
Jones
,
J.
,
Troy
,
W. C.
, and
MacGillivary
,
A. D.
, 1992, “
Steady Solutions of the Kuramoto-Sivashinsky Equation for Small Wave Speed
,”
J. Differ. Equations
0022-0396,
96
, pp.
28
55
.
12.
Lamb
,
J. S. W.
,
Teixeira
,
M.-A.
, and
Webster
,
K. N.
, 2005, “
Heteroclinic Bifurcations Near Hopf-Zero Bifurcation in Reversible Vector Fields in R3
,”
J. Differ. Equations
0022-0396,
219
, pp.
78
115
.
13.
Elgin
,
J. N.
, and
Wu
,
X.
, 1996, “
Stability of Cellular States of the Kuramoto-Sivashinsky Equation
,”
SIAM J. Appl. Math.
0036-1399,
56
, pp.
1621
1638
.
14.
Hooper
,
A. P.
, and
Grimshaw
,
R.
, 1988, “
Travelling Wave Solutions of the Kuramoto-Sivashinsky Equation
,”
Wave Motion
0165-2125,
10
, pp.
405
420
.
15.
Adams
,
K. L.
,
King
,
J. R.
, and
Tew
,
R. H.
, 2003, “
Beyond-All-Orders Effects in Multiple-Scales Asymptotics: Travelling-Wave Solutions to the Kuramoto-Sivashinsky Equation
,”
J. Eng. Math.
0022-0833,
45
, pp.
197
226
.
16.
Wittenberg
,
R. W.
, 2002, “
Dissipativity, Analyticity and Viscous Shocks in the (De)stabilized Kuramoto-Sivashinsky Equation
,”
Phys. Lett. A
0375-9601,
300
, pp.
407
416
.
17.
Chaté
,
H.
, and
Manneville
,
P.
, 1987, “
Transition to Turbulence via Spatiotemporal Intermittency
,”
Phys. Rev. Lett.
0031-9007,
58
, pp.
112
115
.
18.
Goodman
,
J.
, 1994, “
Stability of the Kuramoto-Sivashinsky and Related Systems
,”
Commun. Pure Appl. Math.
0010-3640,
47
, pp.
293
306
.
19.
Bronski
,
J. C.
, and
Gambill
,
T.
, 2005, “
Uncertainty Estimates and L2 Bounds for the Kuramoto-Sivashinsky Equation
,” preprint arXiv: math.AP/0508481.
20.
Giacomelli
,
L.
, and
Otto
,
F.
, 2005, “
New Bounds for the Kuramoto-Sivashinsky Equation
,”
Commun. Pure Appl. Math.
0010-3640,
58
, pp.
297
318
.
21.
Devaney
,
R. L.
, 1976, “
Reversible Diffeomorphisms and Flows
,”
Trans. Am. Math. Soc.
0002-9947,
218
, pp.
89
113
.
22.
McCord
,
C. K.
, 1986, “
Uniqueness of Connecting Orbits in the Equation y(3)=y2−1
,”
J. Math. Anal. Appl.
0022-247X,
114
, pp.
584
592
.
23.
Fenichel
,
N.
, 1979, “
Geometric Singular Perturbation Theory for Ordinary Differential Equations
,”
J. Differ. Equations
0022-0396,
31
, pp.
53
98
.
24.
Szmolyan
,
P.
, and
Wechselberger
,
M.
, 2001, “
Canards in R3
,”
J. Differ. Equations
0022-0396,
177
, pp.
419
453
.
25.
Doedel
,
E.
,
Paffenroth
,
R. C.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Oldeman
,
B. E.
,
Sandstede
,
B.
, and
Wang
,
X.
, 2002, “
AUTO2000: Continuation and Bifurcation Software for Ordinary Differential Equations (with HOMCONT)
,” Technical report, Concordia University, Montreal.
26.
Rademacher
,
J. D. M.
,
Sandstede
,
B.
, and
Scheel
,
A.
, 2005, “
Computing Absolute and Essential Spectra using Continuation
,” IMA Preprint No. 2054, University of Minnesota, Minneapolis.
This content is only available via PDF.
You do not currently have access to this content.