Abstract
We study stationary periodic solutions of the Kuramoto-Sivashinsky (KS) model for complex spatio-temporal dynamics in the presence of an additional linear destabilizing term. In particular, we show the phase space origins of the previously observed stationary “viscous shocks” and related solutions. These arise in a reversible four-dimensional dynamical system as perturbed heteroclinic connections whose tails are joined through a reinjection mechanism due to the linear term. We present numerical evidence that the transition to the KS limit contains a rich bifurcation structure even within the class of stationary reversible solutions.
Issue Section:
Research Papers
Keywords:
numerical stability,
nonlinear dynamical systems,
spatiotemporal phenomena,
periodic control
Topics:
Shock (Mechanics)
1.
Cross
, M.
, and Hohenberg
, P.
, 1993, “Pattern Formation Outside of Equilibrium
,” Rev. Mod. Phys.
0034-6861, 65
, pp. 851
–1112
.2.
LaQuey
, R.
, Mahajan
, S.
, Rutherford
, P.
, and Tang
, W.
, 1975, “Nonlinear Saturation of the Trapped-Ion Mode
,” Phys. Rev. Lett.
0031-9007, 34
, pp. 391
–394
.3.
Sivashinsky
, G.
, 1977, “Nonlinear Analysis of Hydrodynamic Instability in Laminar Flames—I. Derivation of Basic Equations
,” Acta Astron.
0001-5237, 4
, pp. 1177
–1206
.4.
Kuramoto
, Y.
, and Tsuzuki
, T.
, 1976, “Persistent Propagation of Concentration Waves in Dissipative Media far From Thermal Equilibrium
,” Prog. Theor. Phys.
0033-068X, 55
, pp. 356
–369
.5.
Misbah
, C.
, and Valance
, A.
, 1994, “Secondary Instabilities in the Stabilized Kuramoto-Sivashinsky Equation
,” Phys. Rev. E
1063-651X, 49
, pp. 166
–183
.6.
Doelman
, A.
, Sandstede
, B.
, Scheel
, A.
, and Schneider
, G.
, 2005, “The Dynamics of Modulated Wave Trains
,” preprint.7.
Wittenberg
, R. W.
, and Holmes
, P.
, 1999, “Scale and Space Localization in the Kuramoto-Sivashinsky Equation
,” Chaos
1054-1500, 9
, pp. 452
–465
.8.
Wittenberg
, R. W.
, and Holmes
, P.
, 2002, “Spatially Localized Models of Extended Systems
,” Nonlinear Dyn.
0924-090X, 25
, pp. 111
–132
.9.
Michelson
, D.
, 1986, “Steady Solutions of the Kuramoto-Sivashinsky Equation
,” Physica D
0167-2789, 19
, pp. 89
–111
.10.
Kent
, P.
, and Elgin
, J.
, 1992, “Travelling-Waves of the Kuramoto-Sivashinsky Equation: Period-Multiplying Bifurcations
,” Nonlinearity
0951-7715, 5
, pp. 899
–919
.11.
Jones
, J.
, Troy
, W. C.
, and MacGillivary
, A. D.
, 1992, “Steady Solutions of the Kuramoto-Sivashinsky Equation for Small Wave Speed
,” J. Differ. Equations
0022-0396, 96
, pp. 28
–55
.12.
Lamb
, J. S. W.
, Teixeira
, M.-A.
, and Webster
, K. N.
, 2005, “Heteroclinic Bifurcations Near Hopf-Zero Bifurcation in Reversible Vector Fields in R3
,” J. Differ. Equations
0022-0396, 219
, pp. 78
–115
.13.
Elgin
, J. N.
, and Wu
, X.
, 1996, “Stability of Cellular States of the Kuramoto-Sivashinsky Equation
,” SIAM J. Appl. Math.
0036-1399, 56
, pp. 1621
–1638
.14.
Hooper
, A. P.
, and Grimshaw
, R.
, 1988, “Travelling Wave Solutions of the Kuramoto-Sivashinsky Equation
,” Wave Motion
0165-2125, 10
, pp. 405
–420
.15.
Adams
, K. L.
, King
, J. R.
, and Tew
, R. H.
, 2003, “Beyond-All-Orders Effects in Multiple-Scales Asymptotics: Travelling-Wave Solutions to the Kuramoto-Sivashinsky Equation
,” J. Eng. Math.
0022-0833, 45
, pp. 197
–226
.16.
Wittenberg
, R. W.
, 2002, “Dissipativity, Analyticity and Viscous Shocks in the (De)stabilized Kuramoto-Sivashinsky Equation
,” Phys. Lett. A
0375-9601, 300
, pp. 407
–416
.17.
Chaté
, H.
, and Manneville
, P.
, 1987, “Transition to Turbulence via Spatiotemporal Intermittency
,” Phys. Rev. Lett.
0031-9007, 58
, pp. 112
–115
.18.
Goodman
, J.
, 1994, “Stability of the Kuramoto-Sivashinsky and Related Systems
,” Commun. Pure Appl. Math.
0010-3640, 47
, pp. 293
–306
.19.
Bronski
, J. C.
, and Gambill
, T.
, 2005, “Uncertainty Estimates and L2 Bounds for the Kuramoto-Sivashinsky Equation
,” preprint arXiv: math.AP/0508481.20.
Giacomelli
, L.
, and Otto
, F.
, 2005, “New Bounds for the Kuramoto-Sivashinsky Equation
,” Commun. Pure Appl. Math.
0010-3640, 58
, pp. 297
–318
.21.
Devaney
, R. L.
, 1976, “Reversible Diffeomorphisms and Flows
,” Trans. Am. Math. Soc.
0002-9947, 218
, pp. 89
–113
.22.
McCord
, C. K.
, 1986, “Uniqueness of Connecting Orbits in the Equation y(3)=y2−1
,” J. Math. Anal. Appl.
0022-247X, 114
, pp. 584
–592
.23.
Fenichel
, N.
, 1979, “Geometric Singular Perturbation Theory for Ordinary Differential Equations
,” J. Differ. Equations
0022-0396, 31
, pp. 53
–98
.24.
Szmolyan
, P.
, and Wechselberger
, M.
, 2001, “Canards in R3
,” J. Differ. Equations
0022-0396, 177
, pp. 419
–453
.25.
Doedel
, E.
, Paffenroth
, R. C.
, Champneys
, A. R.
, Fairgrieve
, T. F.
, Kuznetsov
, Y. A.
, Oldeman
, B. E.
, Sandstede
, B.
, and Wang
, X.
, 2002, “AUTO2000: Continuation and Bifurcation Software for Ordinary Differential Equations (with HOMCONT)
,” Technical report, Concordia University, Montreal.26.
Rademacher
, J. D. M.
, Sandstede
, B.
, and Scheel
, A.
, 2005, “Computing Absolute and Essential Spectra using Continuation
,” IMA Preprint No. 2054, University of Minnesota, Minneapolis.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.