This paper deals with nonlinear modeling of planar one- and two-link, flexible manipulators with rotary joints using finite element method (FEM) based approaches. The equations of motion are derived taking into account the nonlinear strain-displacement relationship and two characteristic velocities, Ua and Ug, representing material and geometric properties (also axial and flexural stiffness) respectively, are used to nondimensionalize the equations of motion. The effect of variation of Ua and Ug on the dynamics of a planar flexible manipulator is brought out using numerical simulations. It is shown that above a certain Ug value (approximately 45ms), a linear model (using a linear strain-displacement relationship) and the nonlinear model give approximately the same tip deflection. Likewise, it was found that the effect of Ua is prominent only if Ug is small. The natural frequencies are seen to be varying in a nonlinear manner with Ua and in a linear manner with Ug.

1.
Bahgat
,
B. M.
, and
Willmert
,
K. D.
, 1976, “
Finite Element Vibration Analysis of Planar Mechanisms
,”
Mech. Mach. Theory
0094-114X,
11
, pp.
47
71
.
2.
Midha
,
A.
,
Erdman
,
A. G.
, and
Frohib
,
D. A.
, 1978, “
Finite Element Approach to Mathematical Modeling of High Speed Elastic Linkages
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
603
618
.
3.
Book
,
W. J.
, 1984, “
Recursive Lagrangian Dynamics of Flexible Manipulator Arms
,”
Int. J. Robot. Res.
0278-3649,
3
(
3
), pp.
87
101
.
4.
Hastings
,
G.
, and
Book
,
W. J.
, 1987, “
Linear Dynamic Model for Flexible Link Manipulator
,”
IEEE Control Syst. Mag.
0272-1708,
7
(
1
), pp.
61
64
.
5.
Trucic
,
D. A.
, and
Midha
,
A.
, 1984, “
Generalized Equations of Motion for Dynamic Analysis of Elastic Mechanism
,”
J. Mech. Des.
1050-0472,
106
, pp.
243
248
.
6.
Usoro
,
P. B.
,
Nadira
,
R.
, and
Mahil
,
S. S.
, 1986, “
A Finite Element Lagrange Approach to Modeling Light Weight Flexible Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
108
, pp.
198
205
.
7.
Nagaraj
,
B. P.
,
Nataraju
,
B. S.
, and
Ghosal
,
A.
, 1997, “
Dynamics of a Two-Link Flexible System Undergoing Locking: Mathematical Modeling and Comparisons With Experiments
,”
J. Sound Vib.
0022-460X,
207
(
4
), pp.
567
589
.
8.
Theodore
,
R. J.
, and
Ghosal
,
A.
, 1995, “
Comparison of Assumed Mode and Finite Element Methods for Flexible Multi-Link Manipulators
,”
Int. J. Robot. Res.
0278-3649,
14
(
2
), pp.
91
111
.
9.
Przemieniecki
,
J. S.
, 1968,
Theory of Matrix Structural Analysis
,
McGraw-Hill
,
New York
.
10.
Bakr
,
E. M.
, and
Shabana
,
A. A.
, 1986, “
Geometrically Non-Linear Analysis of Multi-Body Systems
,”
Comput. Struct.
0045-7949,
23
(
6
), pp.
739
751
.
11.
Gordaninejad
,
F.
,
Azhdari
,
A.
, and
Chalhoub
,
N. G.
, 1989, “
The Combined Effects of Geometric Non-Linearity and Shear Deformation on the Performance of a Revolute-Prismatic Flexible Composite-Material Robot Arm
,”
Proceedings of Fourth International Conference on CAD, CAM, Robotics and Factories of the Future
, Indian Institute of Technology, New Delhi, Dec. 19–22,
Tata McGraw Hill
,
New Delhi
, Vol.
1
, pp.
620
638
.
12.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1987, “
The Role of Nonlinear Theories in Transient Dynamic Analysis of Flexible Structures
,”
J. Sound Vib.
0022-460X,
119
(
3
), pp.
487
508
.
13.
Damaren
,
C.
, and
Sharf
,
L.
, 1995, “
Simulation of Flexible-Link Manipulators With Inertia and Geometric Nonlinearities
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
117
, pp.
74
87
.
14.
Mayo
,
J.
,
Dominguez
,
J.
, and
Shabana
,
A. A.
, 1995, “
Geometrically Nonlinear Formulations of Beams in Flexible Multi-Body Dynamics
,”
ASME J. Vibr. Acoust.
0739-3717,
117
, pp.
501
509
.
15.
Absy
,
H. E. L.
, and
Shabana
,
A. A.
, 1997, “
Geometric Stiffness and Stability of Rigid Body Modes
,”
J. Sound Vib.
0022-460X,
207
(
4
), pp.
465
496
.
16.
Du
,
H.
, and
Ling
,
S. F.
, 1995, “
A Nonlinear Dynamic Model for Three-Dimensional Flexible Linkages
,”
Comput. Struct.
0045-7949,
56
(
1
), pp.
15
23
.
17.
Al-Bedoor
,
B. O.
, and
Hamdan
,
M. N.
, 2001, “
Geometrically Non-linear Dynamic Model of a Rotating Flexible Arm
,”
J. Sound Vib.
0022-460X,
240
(
1
), pp.
59
72
.
18.
Gurgoze
,
M.
, 1998, “
On the Dynamic Analysis of a Flexible L-Shaped Structure
,”
J. Sound Vib.
0022-460X,
211
(
4
), pp.
683
688
.
19.
Oguamanam
,
D. C. D.
,
Hansen
,
J. S.
, and
Heppler
,
G. R.
, 1998, “
Vibration of Arbitrarily Oriented Two-Member Open Frames With Tip Mass
,”
J. Sound Vib.
0022-460X,
209
(
4
), pp.
651
669
.
20.
Milford
,
R. I.
, and
Ashokanthan
,
S. F.
, 1999, “
Configuration Dependent Eigenfrequencies for a Two-Link Flexible Manipulator: Experimental Verification
,”
J. Sound Vib.
0022-460X,
222
(
2
), pp.
191
207
.
21.
Reddy
,
B. S.
,
Simha
,
K. R. Y.
, and
Ghosal
,
A.
, 1999, “
Free Vibration of a Kinked Cantilever With Attached Masses
,”
J. Acoust. Soc. Am.
0001-4966,
105
(
1
), pp.
164
174
.
22.
Agrawal
,
O. P.
, and
Shabana
,
A. A.
, 1985, “
Dynamic Analysis of Multi-Body Systems Using Component Modes
,”
Comput. Struct.
0045-7949,
21
(
6
), pp.
1303
1312
.
23.
Witham
,
G. B.
, 1986,
Linear and Nonlinear Waves
,
Wiley
,
New York
.
24.
Matlab Users Manual
, 1994,
The MathWorks Inc.
,
Natick, Massachusetts
.
25.
Wolfram
,
S.
, 1996,
The Mathematica Book
,
3rd ed.
,
Cambridge University Press
,
Cambridge, England
.
This content is only available via PDF.
You do not currently have access to this content.