Abstract

Electrically driven impact microactuators generate nanoscale displacements without large driving distances and high voltages. These systems exhibit complex dynamics because of inherent nonlinearities due to impacts, friction, and electric forces. As a result, dramatic changes in system behavior, associated with so-called grazing bifurcations, may occur during the transition between impacting and nonimpacting dynamics, including the presence of robust chaos. For successful open-loop operating conditions, the system design is limited to certain parameter regions, where desired system responses reside. The objective of this paper is to overcome this limitation to allow for a more precise displacement manipulation using impact microactuators. This is achieved through a closed-loop feedback scheme that successfully controls the system dynamics in the near-grazing region.

1.
Lee
,
A. P.
,
Nikkel
,
D. J.
Jr.
, and
Pisano
,
A. P.
, 1993, “
Polysilicon linear Microvibromotors
,”
Proc. 7th International Conference Solid-State Sensors and Actuators
, Yokohama, Japan, pp.
46
49
.
2.
Mita
,
M.
,
Arai
,
M.
,
Tensaka
,
S.
,
Kobayashi
,
D.
, and
Fujita
,
H.
, 2003, “
A Micromachined Impact Microactuator Driven by Electrostatic Force
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
37
41
.
3.
Daneman
,
M. J.
,
Tien
,
N. C.
,
Solgaard
,
O.
,
Pisano
,
A. P.
,
Lau
,
K. Y.
, and
Muller
,
R. S.
, 1996, “
Linear Microvibromotor for Positioning Optical Components
,”
J. Microelectromech. Syst.
1057-7157,
5
, pp.
159
165
.
4.
Saitou
,
K.
,
Wang
,
D. A.
, and
Wou
,
S. J.
, 2000, “
Externally Resonated Linear Microvibromotor for Microassembly
”,
J. Microelectromech. Syst.
1057-7157,
9
, pp.
36
346
.
5.
Zhao
,
X.
,
Dankowicz
,
H.
,
Reddy
,
C. K.
, and
Nayfeh
,
A. H.
, 2004, “
Modelling and Simulation Methodology for Impact Microactuators
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
775
784
.
6.
Zhao
,
X.
,
Reddy
,
C. K.
, and
Nayfeh
,
A. H.
, 2005, “
Nonlinear Dyn. of an Electrically Driven Impact Microactuator
,”
Nonlinear Dyn.
0924-090X,
40
, pp.
227
239
.
7.
Foale
,
S.
, and
Bishop
,
R.
, 1994, “
Bifurcations in Impacting Systems
,”
Nonlinear Dyn.
0924-090X,
6
, pp.
285
299
.
8.
Dankowicz
,
H.
, and
Zhao
,
X.
, 2005, “
Local Analysis of Co-Dimension-One and Co-Dimension-Two Grazing Bifurcations in impact Microactuators
”,
Physica D
0167-2789,
202
, pp.
238
257
.
9.
Dankowicz
,
H.
, and
Jerrelind
,
J.
, 2006, “
Control of Near-Grazing Dynamics in Impact Oscillators
,”
Proc. R. Soc. London, Ser. A
1364-5021 (to be published).
10.
Nordmark
,
A. B.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
, pp.
279
297
.
11.
Nordmark
,
A. B.
, 1997, “
Universal Limit Mapping in Grazing Bifurcations
,”
Phys. Rev. E
1063-651X
55
, pp.
266
270
.
12.
Fredriksson
,
M. H.
, and
Nordmark
,
A. B.
, 1997, “
Bifurcations Caused by Grazing Incidence in Many Degrees of Freedom Impact Oscillators
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
1261
1276
.
13.
Dankowicz
,
H.
, and
Nordmark
,
A. B.
, 1999, “
On the Origin and Bifurcations of Stick-Slip Oscillations
,”
Physica D
0167-2789,
136
, pp.
280
302
.
14.
di Bernardo
,
M.
,
Budd
,
C. J.
, and
Champneys
,
A. R.
, 2000, “
Normal Form Maps for Grazing Bifurcations in n -Dimensional Piecewise-Smooth Dynamical Systems
,”
Physica D
0167-2789,
160
, pp.
222
254
.
15.
Nordmark
,
A. B.
, 2001, “
Existence of Periodic Orbits in Grazing Bifurcations of Impacting Mechanical Oscillators
,”
Nonlinearity
0951-7715,
14
, pp.
1517
1542
.
You do not currently have access to this content.