Abstract

Alloying elements were added to the copper matrix to produce unidirectional carbon-fiber-reinforced copper-matrix composites with different interfacial bonding strengths (IBS). The thermal expansion coefficients of these composites were determined to investigate the influence of the IBS on the thermal expansion behavior at a low temperature range. The results showed that the thermal expansion coefficient (CTE) at low temperatures (elastic region) of the composites was controlled by the IBS. Furthermore, the IBS of the composites was observed to control the thermal stresses in the matrix and, therefore, to affect the temperature of the onset of matrix yielding. However, the relationship between IBS and expansion behavior at a high temperature range (beyond elastic region) for the present carbon-fiber copper composite system cannot be determined because of the influence of matrix strength. Further work is underway to develop a model so as to correlate the IBS with the CTE of the composites under elastic stage, and a suitable composite system is needed to correlate the IBS to the CTE at high temperatures.

References

1.
Ramirez
,
A. M.
,
Castaneda
,
A. M.
, and
Ruiz
,
F.
, “
Topographic Features of a 319 Al/SiC Composite
,”
Scripta Metall
, Vol.
31
,
1994
, pp.
1371
-
1377
.
2.
Ochiai
,
S.
, and
Osamura
,
K.
, “
Influences of Matrix Ductility, Interfacial Bonding Strength, and Fiber Volume Fraction on Tensile Strength of Unidirectional Metal Matrix Composite
,”
Metall Trans
, Vol.
21A
,
1990
, pp.
971
-
978
.
3.
Lawcock
,
G.
,
Ye
,
L.
,
Mai
,
Y. W.
, and
Sun
,
C. T.
, “
Effect of Adhesive Bonding Between Aluminum and Composite Prepreg on the Mechanical Properties of Carbon-fiber-reinforced Metal Laminates
,”
Compos Sci Technol
, Vol.
57
,
1997
, pp.
35
-
45
.
4.
Koss
,
D. A.
,
Hellmann
,
J. R.
, and
Kalias
,
M. N.
, “
Fiber Pushout and Interfacial Shear in Metal-Matrix Composites
,”
JOM
, Vol.
45
,
1997
, pp.
34
-
37
.
5.
Wan
,
Y. Z.
,
Wang
,
Y. L.
,
Luo
,
H. L.
,
Dong
,
X. H.
, and
Cheng
,
G. X.
, “
Effects of Fiber Volume Fraction, Hot Pressing Parameters and Alloying Elements on Tensile Strength of Carbon Fiber Reinforced Copper Matrix Composite Prepared by Continuous Three-step Electrodeposition
,”
Mat Sci Eng
, Vol.
288A
,
2000
, pp.
26
-
31
.
6.
Silvain
,
J. F.
,
Petitcorps
,
Y. L. E.
,
Sellier
,
E.
,
Bonniau
P.
, and
Heim
V.
, “
Elastic Moduli, Thermal Expansion and Microstructure of Copper-matrix Composite Reinforced by Continuous Graphite Fibers
,”
Composites
, Vol.
25
,
1994
, pp.
570
-
574
.
7.
Wang
,
Y. L.
,
Liu
,
Z. N.
,
Zhang
,
H. X.
, and
Fan
,
D. N.
, “
A Study on Carbon Fiber (long fiber) Reinforced Copper Matrix Composite
,”
J Tianjin Univ
, Vol.
21
,
1988
, pp.
61
-
65
. (in Chinese)
8.
Wang
,
Y. L.
,
Fan
,
D. N.
,
Liu
,
Z. N.
,
Zhang
,
H. X.
, and
Li
,
G. J.
, “
Influence of Alloying Elements on Interfacial Bonding Strength and Properties of C/Cu Composites
,”
Acta Mater Compos Sin
, Vol.
10
,
1993
, pp.
113
-
121
(in Chinese).
9.
Wan
,
Y. Z.
,
Wang
,
Y. L.
,
Li
,
Q. Y.
, and
Dong
,
X. H.
, “
Influence of Surface Treatment of Carbon Fibers on Interfacial Adhesion Strength and Mechanical Properties of PLA-Based Composites
,”
J Appl Polym Sci
, Vol.
80
,
2001
, pp.
367
-
376
.
10.
ASM international Handbook Committee
, “
Properties and Selection, Nonferrous Alloys and Special-purpose Materials
,”
Metals Handbook
, 10th ed., Vol.
2
.
The Materials Information Society
,
1990
,
USA
.
11.
Piggot
,
M. R.
,
Sanadi
,
A.
,
Chua
,
P. S.
, and
Andison
,
D.
,
Proc. 1st Int. Conf. on the Composite Interface (ICCI-1)
,
Ishida
H.
and
Koenig
J. L.
Eds.,
Elsevier
,
London
,
1986
, pp.
109
-
121
.
12.
Schapery
,
R. A.
, “
Thermal Expansion Coefficient of Composite Materials Based on Energy Principles
,”
J Compos Mater
, Vol.
2
,
1968
, pp.
380
-
404
.
13.
Elomari
,
S.
,
Skibo
,
M. D.
,
Sundarrajan
,
A.
, and
Richards
,
H.
, “
Thermal Expansion Behavior of Particulate Metal-matrix Composites
,”
Compos Sci Technol
, Vol.
58
,
1998
, pp.
369
-
376
.
14.
Korb
,
G.
,
Korab
,
J.
, and
Groboth
,
G.
, “
Thermal Expansion Behavior of Unidirectional Carbon-Fiber-reinforced Coppermatrix Composites
,”
Composites
, Vol.
29A
,
1998
, pp.
1563
-
1567
.
15.
Garmong
,
G.
, “
Elastic-plastic Analysis of Deformation Induced by Thermal Stress in Eutectic Composites 2, Thermal Expansion
,”
Met Trans
, Vol.
5
,
1974
, pp.
2191
-
2197
.
16.
Turner
,
P. S.
, “
Thermal-expansion Stresses in Reinforced Plastics
,”
J Res Natl Bur Stand
, Vol.
37
,
1964
, pp.
150
-
239
.
17.
Kural
,
M. K.
and
Min
,
B. K.
, “
The Effects of Matrix Plasticity on the Thermal Deformation of Continuous Fiber Graphite/Metal Composites
,”
J Compos Mater
, Vol.
18
,
1984
, pp.
519
-
535
.
18.
Ellis
,
D. L.
and
Mcdanels
,
D. L.
, “
Thermal Conductivity and Thermal Expansion of Graphite Fiber-reinforced Copper Matrix Composites
,”
Metall Trans
, Vol.
24A
,
1993
, pp.
43
-
52
.
19.
Huybrechts
,
F.
and
Delanny
,
F.
, “
Processing of Carbon Fiber Reinforced Copper Based Composites with Chromium Additions for Control of Interface Adhesion
,”
Powder Metallurgy
, Vol.
4
,
1991
, pp.
281
-
286
.
20.
DeVincent
,
S. M.
,
Ellis
,
D. L.
, and
Michal
,
G. M.
, NASA Report CR-187087,
NASA, Washington, DC
,
03
1991
.
21.
Korab
,
J.
,
Korb
,
G.
,
Stefanik
,
P.
, and
Degischer
,
H. P.
, “
Effect of Thermal Cycling on the Microstructure of Continuous Carbon Fiber Reinforced Copper Matrix Composites
,”
Composites
, Vol.
30A
,
1999
, pp.
1023
-
1026
.
This content is only available via PDF.
You do not currently have access to this content.