Abstract

This paper presents a technique for measuring the crack opening displacement (COD) and crack shear displacement (CSD) profiles at a delamination crack tip, and using them to evaluate the effective ‘local’ Mode I and Mode II strain energy release rates. These values can then be compared to the ‘global’ strain energy release rates calculated in the usual manner from the globally applied conditions using Linear Elastic Fracture Mechanics (LEFM). The fixture that has been developed can accommodate full size standard delamination specimens, which can be loaded to failure in Mode I, Mode II, and mixed mode inside a Scanning Electron Microscope (SEM). The globally applied conditions (loads and displacements) and the local crack tip displacements can be simultaneously recorded and compared. The specimen preparation, the data acquisition and test control system, and the image acquisition and analysis system are described in detail.

As an example, the results for a Mode I test of a 24-layer unidirectional AS4/3501-6 laminate are presented here. The COD profiles have been measured for 10 load levels covering 3 crack lengths. A square root singularity was observed, for roughly 500 μm behind the crack tip. Furthermore, there is perfect agreement between the local and global strain energy release rates, indicating that the globally applied load is transmitted fully to the crack tip. These results, for a brittle material with no fiber bridging, demonstrate the validity of the technique. In future publications, we will apply the technique to study fiber bridging in Mode I loading, crack waviness effects under Mode II loading, mixed-mode loading, and other cases of interest.

References

1.
Davies
,
P.
and
Benzeggah
,
M. L.
, “
Interlaminar Mode-I Fracture Testing
,”
Application of Fracture Mechanics to Composite Materials
,
K.
Friedrich
, Ed.,
Elsevier Science Publishers
,
Amsterdam
,
1989
, pp.
81
-
112
.
2.
Hashemi
,
S.
,
Kinloch
,
A.
, and
Williams
,
G.
, “
Mixed-Mode Fracture in Fiber-Polymer Composite Laminates
,”
Composite Materials: Fatigue and Fracture (Third Volume), ASTM STP 1110
,
T. K.
O’Brien
, Ed.,
American Society for Testing and Materials
,
Philadelphia, PA
,
1991
, pp.
143
-
168
.
3.
Smith
,
P. A.
,
Gilbert
,
D. G.
, and
Poursartip
,
A.
, “
Matrix Cracking of Composites Inside a Scanning Electron Microscope
,”
Journal of Materials Science Letters
, Vol.
4
,
1985
, pp.
845
-
847
.
4.
Hibbs
,
M. F.
and
Bradley
,
W. L.
, “
Correlations Between Micromechanical Failure Processes and the Delamination Toughness of Graphite/Epoxy System
,”
Fractography of Modern Engineering Materials: Composites and Metals
, ASTM STP 948,
J. E.
Masters
and
J. J.
Au
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1987
, pp.
68
-
97
.
5.
Shercliff
,
H.
,
Vekinis
,
G.
, and
Beaumont
,
P. W. R.
, “
Direct Observation of the Fracture of Cas-Glass/Sic Composites. Part I. Delamination
,”
Journal of Materials Science
, Vol.
29
,
1994
, pp.
3643
-
3652
.
6.
Sun
,
Y. Q.
,
Tian
,
J.
and
Anderson
,
T. L.
, “
In Situ Observation of Delamination Fracture Test in Graphite/Epoxy Composite During Mode II Loading Inside a SEM
,”
Proceedings of the Ninth International Conference on Composite Materials (ICCM/9)
, Vol.
V
(Composites Behaviour),
Madrid, Spain
,
1993
, pp.
834
-
841
.
7.
Sih
,
G. C.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, “
On Cracks in Rectilinearly Anisotropic Bodies
,”
International Journal of Fracture Mechanics
, Vol.
1
,
1965
, pp.
189
-
202
.
8.
Mao
,
T. H.
,
Beaumont
,
P. W. R.
, and
Nixon
,
W. C.
, “
Direct Observations of Crack Propagation in Brittle Materials
,”
Journal of Materials Science Letters
, Vol.
2
,
1983
, pp.
613
-
616
.
9.
Theocaris
,
P. S.
,
Stassinakis
,
C. A.
, and
Kytopoulos
,
V.
, “
Stress Intensity Factors and Cods Defined by In-Plane Displacements Measured by Scanning Electron Microscopy
,”
Journal of Materials Science
, Vol.
23
,
1988
, pp.
3992
-
3996
.
10.
Theocaris
,
P. S.
, “
Elastic Field Around the Crack Tip Measured by Scanning Electromicroscopy
,”
Engineering Fracture Mechanics
, Vol.
37
,
1990
, pp.
739
-
751
.
11.
Kortschot
,
M. T.
, “
High Resolution Strain Measurements by Direct Observation in the Scanning Electron Microscope
,”
Journal of Materials Science
, Vol.
23
,
1988
, pp.
3970
-
3972
.
12.
Bradley
,
W. L.
, “
Relationship of Matrix Toughness to Interlaminar Fracture Toughness
,”
Application of Fracture Mechanics to Composite Materials
,
K.
Friedrich
, Ed.,
Elsevier Science Publisher
,
Amsterdam, The Netherlands
,
1989
, pp.
159
-
187
.
13.
Ferguson
,
J. S.
,
Gambone
,
L. R.
, and
Poursartip
,
A.
, “
The Influence of Mode of Loading on the Local Crack Tip Behaviour of Delaminations
,”
First Canadian International Composites Conference and Exhibition (CANCOM ’91)
,
1991
.
14.
Bannister
,
M.
,
Shercliff
,
H.
, and
Ashby
,
M. F.
, et al
, “
Toughening in Brittle Systems by Ductile Bridging Ligaments
,”
Acta Metallurgia et Materialia
, Vol.
40
, No.
7
,
1992
, pp.
1531
-
1537
.
15.
Davidson
,
D. L.
, “
Micromechanics Measurement Techniques for Fracture
,”
Experimental Techniques in Fracture
,
J. S.
Epstein
, Ed.,
VCH Publishers, Inc.
,
USA
,
1993
, pp.
41
-
59
.
16.
Farquhar
,
D. S.
,
Phoenix
,
S. L.
, and
Raj
,
R.
, “
Determination of Fracture Toughness and Bridging Fractions From Crack-Opening Displacement Measurements in Particulate Composites of Diamond in Zinc Sulfide
,”
Acta Metallurgica et Materialia
, Vol.
42
,
1994
, pp.
65
-
75
.
17.
Bradley
,
W. L.
and
Cohen
,
R. N.
, “
Matrix Deformation and Fracture in Graphite-Reinforced Epoxies
,”
Delamination and Debonding of Materials
, ASTM STP 876,
W. S.
Johnson
, Ed.,
American Society for Testing and Materials
,
Philadelphia, PA
,
1985
, pp.
389
-
410
.
18.
Hutchinson
,
J. W.
and
Suo
,
Z.
, “
Mixed Mode Cracking in Layered Materials
,”
Advances in Applied Mechanics
, Vol.
29
,
1992
, pp.
63
-
191
.
19.
Russell
,
A. J.
and
Street
,
K. N.
, “
The Effect of Matrix Toughness on Delamination: Static and Fatigue Fracture Under Mode II Shear Loading of Graphite Fiber Composites
,”
Toughened Composites
, ASTM STP 937,
N. J.
Johnston
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1987
, pp.
275
-
294
.
20.
Poursartip
,
A.
,
Gambone
,
L. R.
, and
Ferguson
,
J. S.
, et al
, “
In-Situ SEM Measurements of Crack Tip Displacements in Composite Laminates to Determine G in Mode I and Mode II
,”
Engineering Fracture Mechanics
, Vol.
60
, No.
2
,
1998
, pp.
173
-
185
.
21.
Ferguson
,
J. S.
, “
Measurement of Delamination Crack Tip Displacements in G/E Laminates Using Scanning Electron Microscopy
,” Master of Applied Science thesis,
The University of British Columbia, Vancouver, BC, Canada
,
1992
.
22.
Davies
,
P.
,
Moulin
,
C.
, and
Kausch
,
H. H.
, “
Measurement of GIC and GIIC in Carbon/Epoxy Composites
,”
Composites Science and Technology
, Vol.
39
,
1990
, pp.
193
-
205
.
23.
O’Brien
,
K. R.
and
Martin
,
R. H.
, “
Round Robin Testing for Mode I Interlaminar Fracture Toughness of Composite Materials
,”
Journal of Composites Technology & Research
, Vol.
15
, No.
4
,
1993
, pp.
269
-
281
.
This content is only available via PDF.
You do not currently have access to this content.