Abstract

An experimental investigation of first-ply failure and strength was conducted on ply-level scaled carbon/epoxy composite laminates having a stacking sequence of [+ϑn/−ϑ/−ϑn/90/902n]s where the constraint ply angle, ϑ, was varied from 0 to 75°, and where the constraint ply angle, ϑ, was varied from 0 to 75°, and n varied from 1 to 4. First-ply failure was shown to depend on the level of constraint and the scale factor, n. The strain energy release rate for matrix microcracking was computed from first-ply failure data of the [02/902]s laminate. Then, first-ply failure for all other layups was predicted using a numerical model that accounted for both constraint and size. Tensile strength was predicted using a strain energy release rate model for delamination of surface angle plies. A delamination energy value for each ply angle was calculated from the thinnest (n = 1) laminates to predict strength of the other sizes.

References

1.
Rodini
,
B. T.
and
Eisenmann
,
J. R.
, “
An Analytical and Experimental Investigation of Edge Delamination in Composite Laminates
,”
Fibrous Composites in Structural Design
,
New York
,
Plenum Press
,
1978
, pp.
441
-
457
.
2.
Crossman
,
F. W.
and
Wang
,
A. S.D.
, “
The Dependence of Transverse Cracking and Delamination on Ply-Thickness in Graphite/Epoxy Laminates
,” ASTM STP 775,
K. L.
Reifsnider
, Ed.,
American Society for Testing and Materials
,
1982
, pp.
118
-
139
.
3.
Herakovich
,
C. T.
, “
Influence of Layer Thickness on the Strength of Angle-Ply Laminates
,”
Journal of Composite Materials
, Vol.
16
,
05
1982
, pp.
216
-
227
.
4.
Kellas
,
S.
and
Morton
,
J.
, “
Strength Scaling in Fiber Composites
,”
AIAA Journal
, Vol.
30
, No.
4
,
04
1992
, pp.
1074
-
1080
.
5.
Kellas
,
S.
and
Morton
,
J.
, “
Scaling Effects in Angle-Ply Laminates
,”
NASA Contractor Report
4423,
02
1992
.
6.
Jackson
,
K. E.
and
Kellas
,
S.
, “
Effect of Specimen Size on the Tensile Strength of Geometrically Scaled [+ϑn/−ϑn/90n]3 Composite Laminates
,”
Army Symposium on Solid Mechanics
,
Plymouth, MA
, August 17–19, 1993.
7.
Reifsnider
,
K. L.
, “
Some Fundamental Aspects of the Fatigue and Fracture Response of Composite Materials
,”
Proceedings of the 14th Annual Meeting, Society of Engineering Science, Recent Advances in Engineering Science
,
G. C.
Sih
, Ed.,
Lehigh University
,
Bethlehem, PA
, Nov. 14–16, 1977, pp.
373
-
384
.
8.
Parvizi
,
A.
,
Garrett
,
K. W.
, and
Bailey
,
J. E.
, “
Constrained Cracking in Glass Fibre-Reinforced Epoxy Cross-Ply Laminates
,”
Journal of Materials Science
, Vol.
13
,
1978
, pp.
195
-
201
.
9.
Aveston
,
J.
and
Kelly
,
A.
, “
Theory of Multiple Fracture of Fibrous Composites
,”
Journal of Materials Science
, Vol.
8
,
1973
, p. 352.
10.
Flaggs
,
D. L.
and
Kural
,
M. H.
, “
Experimental Determination of the In Situ Transverse Lamina Strength in Graphite/Epoxy Laminates
,”
Journal of Composite Materials
, Vol.
16
,
03
1982
, pp.
103
-
116
.
11.
Fukunaga
,
H.
,
Chou
,
T. W.
,
Schulte
,
K.
, and
Peters
,
P. W. M.
, “
Probabilistic Initial Failure Strength of Hybrid and Non-Hybrid Laminates
,”
Journal of Materials Science
, Vol.
19
, No.
11
,
1984
, pp.
3546
-
3553
.
12.
Kistner
,
M. D.
,
Whitney
,
J. M.
, and
Browning
,
C. E.
, “
First-Ply Failure of Graphite/Epoxy Laminates
,”
Recent Advances in Composites in the United States and Japan
, ASTM STP 864,
J. R.
Vinson
and
M.
Taya
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1985
, pp.
44
-
61
.
13.
Zhang
,
J.
,
Fan
,
J.
, and
Soutis
,
C.
, “
Analysis of Multiple Matrix Cracking in [± ϑm/90n]s Composite Laminates, Part 2: Development of Transverse Ply Cracks
,”
Composites
, Vol.
23
, No.
5
,
09
1992
, pp.
299
-
304
.
14.
O’Brien
,
T. K.
and
Hooper
,
S. J.
, “
Local Delaminations in Laminates with Angle Ply Matrix Cracks, Part I: Tension Tests and Stress Analysis
,”
Composite Materials: Fatigue and Fracture, Fourth Volume
, ASTM STP 1156,
W. W.
Stinchcomb
and
N. E.
Ashbaugh
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1993
, pp.
491
-
506
.
15.
O’Brien
,
T. K.
, “
Local Delaminations in Laminates with Angle Ply Matrix Cracks, Part II: Delamination Fracture Analysis and Fatigue Characterization
,”
Composite Materials: Fatigue and Fracture, Fourth Volume
, ASTM STP 1156,
W. W.
Stinchcomb
and
N. E.
Ashbaugh
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1993
, pp.
407
-
538
.
16.
Radford
,
D. W.
, “
Cure Shrinkage Induced Warpage in Flat Uni-Axial Composites
,”
Journal of Composites Technology and Research
, JCTRER, Vol.
15
, No.
4
,
1993
, pp.
290
-
296
.
17.
O’Brien
,
T. K.
, “
Composite Interlaminar Shear Fracture Toughness, GIIc: Shear Measurement or Sheer Myth?
,”
NASA Technical Memorandum
 110280,
02
1997
.
18.
Bradley
,
W. L.
and
Cohen
,
R. N.
, “
Matrix Deformation and Fracture in Graphite Reinforced Epoxies
,”
Delamination and Debonding of Materials
, ASTM STP 876,
10
1985
, pp.
389
-
410
.
19.
Moore
,
R. H.
and
Dillard
,
D. A.
, “
Time-dependent Matrix Cracking in Cross-ply Laminates
,”
Composites Science and Technology
, Vol.
39
,
1990
, pp.
1
-
12
.
This content is only available via PDF.
You do not currently have access to this content.