Abstract
The published literature on the effect of optical sensors and fibers embedded in host composite materials is reviewed. The literature indicates that improperly embedded optical fibers produce local distortions and resin-rich regions in the host composite that cause structural performance degradation. This is especially true for compressive loading of relatively thin composite laminates. Tensile strength is at most only slightly degraded. The available data are inconclusive for fatigue loading.
Issue Section:
Research Papers
References
1.
Udd
, E.
, Fiber Optics Sensors: An Introduction for Engineers and Scientists
, Wiley and Sons
, New York
, 1991
.2.
Lowrie
, R. E.
, “Glass Fibers for High-Strength Composites
,” Modern Composite Materials
, L. A.
Broutman
and R. H.
Krock
, Eds., Adisson-Wesley
, Reading, MA
, 1967
, pp. 270
-323
.3.
Brückner
, R.
and Pähler
, G.
, “Strength and Elastic Constants of Multi-Component Glass Fibers as a Function of Thermal and Mechanical Prehistory
,” Strength of Inorganic Glass
, C. R.
Kurkjian
, Ed., Plenum Press
, New York
, 1979
, pp. 329
-349
.4.
Wong
, D.
and Chu
, P. L.
, “Effect of Mechanical Inhomogeneity on Intrinsic Stress Birefringence in Birefringent Optical Fibres
,” Electronics Letters
, Vol. 26
, No. 14
, 1990
, pp. 967
-969
.5.
Wong
, D.
, “Material Effects on Phase Sensitivity in Polarimetric Optical Fiber Sensors
,” Journal of Lightwave Technology
0733-8724 https://doi.org/10.1109/50.134207, Vol. 10
, 1992
, pp. 523
-526
.6.
Sirkis
, J. S.
and Lu
, I.-P.
, “On Interphase Modeling for Optical Fiber Sensors Embedded in Laminated Composite Systems
,” Adaptive Structures and Material Systems
, G. P.
Carman
and E.
Garcia
, Eds., American Society for Mechanical Engineers
, New York
, 1993
, pp. 419
-427
.7.
Kurkjian
, C. R.
, Krause
, J. T.
, and Matthewson
, M. J.
, “Strength and Fatigue of Silica Optical Fibers
,” Journal of Lightwave Technology
0733-8724 https://doi.org/10.1109/50.50715, Vol. 7
, No. 9
, 1989
, pp. 1360
-1370
.8.
Charles
, R. J.
, “Static Fatigue of Glass
,” Journal of Applied Physics
0021-8979 https://doi.org/10.1063/1.1722992, Vol. 29
, No. 11
, 1958
, pp. 1554
-1560
.9.
Michalske
, T. A.
and Freiman
, S. W.
, “A Molecular Mechanism for Stress Corrosion in Vitreous Silica
,” Journal of the American Ceramics Society
0002-7820 https://doi.org/10.1111/j.1151-2916.1986.tb07366.x, Vol. 69
, No. 11
, 1986
, pp. 815
-821
.10.
Waite
, S. R.
and Sage
, G. N.
, “The Failure of Optical Fibres Embedded in Composite Materials
,” Composites
0010-4361 https://doi.org/10.1016/0010-4361(88)90005-5, Vol. 19
, No. 4
, 1988
, pp. 288
-294
.11.
Waite
, S. R.
, “Use of Embedded Optical Fibre for Significant Fatigue Damage Detection in Composite Materials
,” Composites
0010-4361 https://doi.org/10.1016/0010-4361(90)90237-Q, Vol. 21
, No. 3
, 1990
, pp. 225
-231
.12.
Cuellar
, E.
, Roberts
, D.
, and Middleman
, L.
, “Static Fatigue Lifetime of Optical Fibers in Bending
,” Fiber and Integrated Optics
0146-8030, Vol. 6
, No. 3
, 1987
, pp. 203
-212
.13.
Skutnik
, B.
, Munsey
, B. D.
, and Brucker
, C. T.
, “Coating Adhesion Effects On Fiber Strength and Fatigue Properties
,” Materials Research Society Symposium Proceedings
, Pittsburgh
, Vol. 88
, 1987
, pp. 27
-34
.14.
Kalish
, D.
, Key
, P. L.
, Kurkjian
, C. R.
, Tariyal
, B. K.
, and Wang
, T. T.
, “Fiber Characterization-Mechanical
,” Optical Fiber Telecommunications
, S. E.
Miller
and A. D.
Chynowith
, Eds., Academic Press
, New York
, 1979
, pp. 401
-430
.15.
Aslanova
, M. S.
, “Glass Fibers
,” Strong Fibres
, W.
Watt
and B. V.
Perov
, Eds., North-Holland
, Amsterdam
, 1985
, pp. 3
-60
.16.
Wei
, T.
, “Effects of Polymer Coatings on Strength and Fatigue Properties of Fused Silica Optical Fibers
,” Advanced Ceramic Materials
0883-5551, Vol. 1
, No. 3
, 1986
, pp. 237
-241
.17.
Roberts
, S. S.
and Davidson
, R.
, “Mechanical Properties of Composite Materials Containing Embedded Fibre Optic Sensors
,” Fiber Optic Smart Structures and Skins IV
, SPIE
, Vol. 1588
, 1991
, pp. 326
-341
.18.
Sirkis
, J. S.
and Dasgupta
, A.
, “Thermal Plastic Metal Coatings on Optical Fiber Sensors
,” Fiber Optic Smart Structures and Skins IV
, SPIE
, Vol. 1588
, 1991
, pp. 88
-99
.19.
Glossop
, N. D. W.
, Dubois
, S.
, Tsaw
, W.
, Leblanc
, M.
, Lymer
, J.
, Measure
, R. M.
, and Tennyson
, R. C.
, “Optical Fibre Damage Detection for Aircraft Composite Leading Edge
,” Composites
0010-4361 https://doi.org/10.1016/0010-4361(90)90100-B, Vol. 21
, No. 1
, 1990
, pp. 71
-80
.20.
Rowe
, W. J.
, Rausch
, E. O.
, and Dean
, P. D.
, “Embedded Optical Fiber Strain Sensor For Composite Structure Applications
,” Fiber Optic and Laser Sensors IV
, SPIE
, Vol. 7A5
, 1986
, pp. 266
-273
.21.
Martin
, D. A.
, “Optical Fiber Coating Evaluations for Composites Embedment Applications
,” Materials Research Society Symposium Proceedings
, Pittsburgh
, Vol. 88
, 1987
, pp. 19
-26
.22.
Urruti
, E. H.
, Hawk
, R. M.
, and Blaszyk
, P. E.
, “Optical Fibers for Structural Sensing Applications
,” Fiber Optic Smart Structures and Skins
, SPIE
, Vol. 986
, 1988
, pp. 158
-163
.23.
Nath
, D. K.
, Nelson
, G. W.
, Griffin
, S. E.
, Harrington
, C. T.
, He
, Y.
, Reinhart
, L. J.
, Paine
, D. C.
, and Morse
, T. F.
, “Polyimide Coated Embedded Optical Fiber Sensors
,” Structures Sensing and Control
, SPIE
, Vol. 1489
, 1991
, pp. 17
-32
.24.
DiFrancia
, C.
and Claus
, R. O.
, “Structure/Property Correlation of Several Polyimide Optical Fiber Coatings For Embedding in an Epoxy Matrix
,” Fiber Optic Smart Structures and Skins II
, SPIE
, Vol. 1170
, 1989
, pp. 505
-512
.25.
DiFrancia
, C.
, Claus
, R. O.
, Hellgeth
, J. W.
, and Ward
, T. C.
, “Discussion of Fiber Pullout of Polyimide-Coated Optical Fibers Embedded in Neat Resin
,” Proceedings of Conference on Optical Fiber Sensor-Based Smart Materials and Structures
, R.
Claus
, Ed., Technomic Publishing
, Lancaster
, 1991
, pp. 70
-83
.26.
Miller
, M. S.
, Case
, S. W.
, Carman
, G. P.
, Schmidt
, C. A.
, May
, R. G.
, and Claus
, R. O.
, “Validation of Axial Strain Transfer from a Composite Laminate to Embedded Optical Fiber Sensors
,” Fiber Optic Smart Structures & Skins V
, SPIE
, 1992
.27.
Crane
, R. M.
, Macender
, A. B.
, and Gagorik
, J.
, “Fiber Optic Damage Assessment System for Fiber Reinforced Plastic Composite Structures
,” David Taylor Naval Ship Research and Development Center
, SME-82/92, 11
1982
.28.
Udd
, E.
, Michal
, S. E.
, Higley
, R. J.
, Theriault
, J. P.
, LeCong
, P.
, Jolin
, D. A.
, and Markus
, A. M.
, “Fiber-Optic Sensor Systems for Aerospace Applications
,” Fiber Optic and Laser Sensors V
, Vol. 838
, SPIE
, 1987
, pp. 162
-168
.29.
Sirkis
, J. S.
and Dasgupta
, A.
, “The Role of Local Interaction Mechanics in Fiber Optic Smart Structures
,” Recent Advances in Adaptive and Sensory Materials and Their Applications
, C.
Rogers
, Ed., Techmonic Publishing
, Lancaster
, 1992
, pp. 343
-363
.30.
Paul
, C.
, Sendeckyj
, G. P.
, and Carman
, G. P.
, “Detection of the Onset of Damage Using Extrinsic Fabry-Perot Interferometric Strain Sensors (EFPI-SS)
,” Smart Sensing, Processing, and Instrumentation
, Vol. 1918
, SPIE
, 1993
, pp. 154
-164
.31.
Narendran
, N.
, Shukla
, A.
, and Letcher
, S. V.
, “Determination of Fracture Parameters Using Embedded Fiber-Optic Sensors
,” Experimental Mechanics
, 12
1991
, pp. 360
-365
.32.
Roarke
, D.
, Ethyl Corporation
, personal communications.33.
Bicos
, A. S.
and Tracy
, J. J.
, “Structural Considerations For Sensor Selection and Placement
,” Fiber Optic Smart Structures and Skins II
, Vol. 1170
, SPIE
, 1989
, pp. 70
-76
.34.
Leka
, L. G.
and Bayo
, E.
, “A Close Look at the Embeddment of Optical Fibers into Composite Structures
,” Journal of Composites Technology and Research
0884-6804, JCTRER, Vol. 11
, No. 3
, 1989
, pp. 106
-112
.35.
Dasgupta
, A.
, Wan
, Y.
, Sirkis
, J. S.
, and Singh
, H.
, “Micro-Mechanical Investigation of an Optical Fiber Embedded in a Laminated Composite
,” Fiber Optic Smart Structures and Skins III
, Vol. 1370
, SPIE
, 1990
, pp. 119
-128
.36.
Case
, S. W.
and Carman
, G. P.
, “Compression Strength of Composites Containing Sensors or Actuators
,” Journal of Intelligent Material Systems and Structures
1045-389X, Vol. 5
, 1994
, pp. 4
-11
.37.
Czarnek
, R.
, Guo
, Y. F.
, Bennett
, K. D.
, and Claus
, R. O.
, “Interferometric Measurements of Strain Concentrations Induced by an Optical Fiber Embedded in a Fiber Reinforced Composite
,” Fiber Optic Smart Structures and Skins
, Vol. 986
, SPIE
, 1989
, pp. 43
-54
.38.
Salehi
, A.
, Tay
, A.
, Wilson
, D. A.
, and Smith
, D. G.
, “Strain Concentrations Around Embedded Optical Fibers by FEM and Moire Interferometry
,” Design and Manufacturing of Advanced Composites
, 5th Conference
, ASM International
, Metals Park, OH
, 1989
, pp. 11
-19
.39.
Singh
, H.
, Sirkis
, J. S.
, and Dasgupta
, A.
, “Micro-Interaction of Optical Fibers Embedded in Laminated Composites
,” Fiber Optic Smart Structures and Skins IV
, Vol. 1588
, SPIE
, 1991
, pp. 76
-85
.40.
Hashin
, Z.
and Rosen
, B. W.
, “The Elastic Moduli of Fiber-Reinforced Materials
,” Journal of Applied Mechanics
0021-8936, Vol. 31
, 1964
, pp. 223
-234
.41.
Hill
, R.
, “Theory of Mechanical Properties of Fibre Strengthened Materials: I. Elastic Behavior
,” Journal of Mechanics and Physics of Solids
0022-5096, Vol. 21
, 1964
, pp. 199
-212
.42.
Mathews
, C. T.
and Sirkis
, J. S.
, “The Interaction Mechanics of Interferometric Optical Fiber Sensors Embedded in a Monolithic Structure
,” Fiber Optic Smart Structures and Skins III
, Vol. 1370
, SPIE
, 1990
, pp. 142
-153
.43.
Davidson
, R.
, “Do Embedded Sensor Systems Degrade Mechanical Performance of Host Composites?
” Active Materials and Adaptive Structures
, G. J.
Knowles
, Ed., Institute of Physics Publishing
, Philadelphia
, 1992
, pp. 109
-114
.44.
Dasgupta
, A.
and Sirkis
, J. S.
, “Importance of Coatings to Optical Fiber Sensors Embedded in ‘Smart’ Structures
,” AIAA Journal
0001-1452, Vol. 30
, 1992
, pp. 1337
-1343
.45.
Pak
, Y. E.
, DyReyes
, V.
, and Schmuter
, E. S.
, “Micromechanics of Fiber Optic Sensors
,” Active Materials and Adaptive Structures
, G. J.
Knowles
, Ed., Institute of Physics Publishing
, Philadelphia
, 1992
, pp. 121
-128
.46.
Pak
, Y. E.
, “Longitudinal Shear Transfer in Fiber Optic Sensor
,” Smart Materials and Structures
, Vol. 1
, 1992
, pp. 57
-62
.47.
Carman
, G. P.
and Reifsnider
, K. L.
, “Analytical Minimization of the Obtrusive Behavior Indicative of Embedded Sensors and Actuators
,” Recent Advances in Adaptive and Sensory Materials and Their Applications
, Craig
Rogers
, Ed., Technomic Publishing
, Lancaster
, 04
1992
, pp. 314
-331
.48.
Waite
, S. R.
, “Use of Embedded Optical Fibre for Early Fatigue Damage Detection in Composite Materials
,” Composites
0010-4361 https://doi.org/10.1016/0010-4361(90)90007-J, Vol. 21
, 1990
, pp. 148
-154
.49.
Valis
, T.
, Hogg
, D.
, and Measures
, R. M.
, “Composite Material Embedded Fabry-Perot Strain Rosette
,” Fiber Optic Smart Structures and Skins III
, Volume 1370
, SPIE
, 1990
, pp. 154
-161
.50.
Carman
, G. P.
, Murphy
, K.
, Schmidt
, C. A.
, and Elmore
, J.
, “Extrinsic Fabry Perot Interferometric Sensor Survivability During Mechanical Fatigue Cycling
,” Proceedings of 1993 SEM Spring Conference on Experimental Mechanics
, Dearborne, MI
, 06
1993
, pp. 1079
-1088
.51.
Jensen
, D. W.
and Pascual
, J.
, “Degradation of Graphite/Bismaleimide Laminate with Multiple Embedded Fiber Optic Sensors
,” Fiber Optic Smart Structures and Skins III
, SPIE
, Vol. 1370
, 1990
, pp. 228
-237
.52.
Jensen
, D. W.
, Pascual
, J.
, and August
, J. A.
, “Performance of Graphite/Bismaleimide Laminates with Embedded Optical Fibers. Part 1: Uniaxial Tension
,” Smart Materials and Structures
, Vol. 1
, 1992
, pp. 24
-30
.53.
Jensen
, D. W.
, Pascual
, J.
, and August
, J. A.
, “Tensile Strength and Stiffness Reduction in Graphite/Bismaleimide Laminates with Embedded Fiber-Optic Sensors
,” Active Materials and Adaptive Structures
, G. J.
Knowles
, Ed., Institute of Physics Publishing
, Philadelphia
, 1992
, pp. 115
-120
.54.
Jensen
, D. W.
, Pascual
, J.
, and August
, J. A.
, “Performance of Graphite/Bismaleimide Laminates with Embedded Optical Fibers. Part II: Uniaxial Compression
,” Smart Materials and Structures
, Vol. 1
, 1992
, pp. 31
-35
.55.
Jensen
, D. W.
, August
, J. A.
, and Pascual
, J.
, “Compressive Strength and Stiffness Reduction in Graphite/Bismaleimide Laminates with Embedded Fiber-Optic Sensors
,” Active Materials and Adaptive Structures
, G. J.
Knowles
, Ed., Institute of Physics Publishing
, Philadelphia
, 1992
, pp. 129
-134
.56.
Holl
, M.
and Boyd
, S.
, “The Effect of Embedded Fiber Optics on the Mechanical Properties of a Composite Host Material
,” Smart Materials
, SPIE
, Vol. 1916
, 1993
, pp. 109
-117
.57.
Claus
, R. O.
, Bennett
, K. D.
, and Jackson
, B. S.
, “Nondestructive Evaluation of Composite Materials By Pulsed Time Domain Methods in Imbedded Optical Fibers
,” Review of Progress in Quantitative Nodestructive Evaluation
, Vol. 5b
, 1985
, pp. 1149
-1156
.58.
Yarcho
, W. B.
, “In-House Study to Determine the Effects of Embedded Optical Glass Fibers on the Strength of Graphite Composite Material
,” Materials & Processes Report
MoP-89-Jan-FDBC-006, Wright Laboratory, Wright-Patterson AFB
, 1989
.59.
Rudd
, R.
and Goddard
, K.
, “Composite Integrity Monitoring
,” WRDC-TR-89-3031, Wright Research and Development Center, Wright-Patterson AFB
, 1989
.60.
Measures
, R. M.
, Glossop
, N. D. W.
, Lymer
, J.
, Leblanc
, M.
, West
, J.
, Dubois
, S.
, Tsaw
, W.
, and Tennyson
, R. C.
, “Structurally Integrated Fiber Optic Damage Assessment Systems for Composite Materials
,” Applied Optics
0003-6935, Vol. 28
, 1989
, pp. 2626
-2633
.61.
Paul
, C. A.
and Schoeppner
, G. A.
, “Static Test Study of Composites with Embedded Optical Fibers Using Fractional Factorial Methods
,” Proceedings of the 1993 SEM Spring Conference on Experimental Mechanics
, Society of Experimental Mechanics
, Bethel, CT
, 1993
, pp. 835
-844
.62.
Plante
, A. J.
, “Study of the Adhesive Interface Between Optical Fiber Coatings and a Resin Host Material
,” Center for Adhesive and Sealant Science Report
CASS/EE-92-1, Virginia Polytechnic Institute and State University
, 05
1992
.63.
Carman
, G. P.
, Paul
, C. A.
, and Sendeckyj
, G. P.
, “Transverse Strength of Composites Containing Optical Fibers
,” Smart Structures and Intelligent Systems
, SPIE
, Vol. 1917
, 1993
, pp. 307
-316
.64.
Carman
, G. P.
, Case
, S. W.
, Lesko
, J. J.
, and Fogg
, B. R.
, “Implementation and Evaluation of an Embedded Fabry-Perot Fiber Optic Strain Rossette Sensor for Internal Stress State Assessment
,” Fiber Optic Smart Structures and Skins V
, SPIE
, Vol. 1798
, 1992
, pp. 237
-246
.65.
Lesko
, J. J.
, Carman
, G. P.
, Fogg
, B. R.
, Miller
, W. V.
, Vengsarkar
, A. M.
, Reifsnider
, K. L.
, and Claus
, R. O.
, “Embedded Fabry-Perot Optic Strain Sensor in the Macro-Model Composite
,” Optical Engineering
0091-3286 https://doi.org/10.1117/1.2170602, Vol. 31
, 01
1992
, p. 13.66.
Tsai
, S. W.
and Hahn
, H. T.
, Introduction to Composite Materials
, Technomic Publishing, 1980
, pp. 414
-416
.67.
Hofer
, B.
, “Fibre Optic Damage Detection in Composite Structures
,” Composites
0010-4361, Vol. 18
, No. 4
, 1987
, pp. 300
-315
.68.
Tay
, A. K.
, Wilson
, D. A.
, Demirdogen
, A. C.
, and Houghton
, J. R.
, “Microdamage and Optical Sinal Analysis of Impact Induced Fracture in Smart Structures
,” Fiber Optic Smart Structures and Skins III
, SPIE
, Vol. 1370
, 1990
, pp. 328
-343
.69.
Chang
, C. C.
, “Low Velocity Impact of Laminated Graphite/Epoxy Panels with Embedded Optical Fibers
,” M.S. Thesis, University of Maryland
, 1991
.70.
Sirkis
, J. S.
, Chang
, C. C.
, and Smith
, B. T.
, “Low Velocity Impact of Optical Fiber Embedded Laminated Graphite/Epoxy Panels. Part I: Marco-Scal2
,” Journal of Composite Materials
0021-9983, Vol. 28
, No. 14
, 1994
, pp. 1347
-1370
.71.
Jensen
, D. W.
and Brzenchek
, D. J.
, “Fatigue of a Composite Laminate with Embedded Optical Fibers
,” Proceedings of the 7th International Congress of Experimental Mechanics
, Las Vegas
, 8–11 June 1992, pp. 1319
-1325
.72.
Leblanc
, M.
and Measures
, R. M.
, “Impact Damage Assessment in Composites with Embedded Fiber-Optic Sensors
,” Composites Engineering
0961-9526, Vol. 2
, Nos. 5–7
, 1992
, pp. 573
-596
.73.
Roberts
, S. S. J.
and Davidson
, R.
, “Short Term Fatigue Behavior of Composite Materials Containing Embedded Fiber Optic Sensors & Actuators
,” First European Conference on Smart Structures and Materials
, B.
Culshaw
, P. T.
Gardiner
, and A.
McDonach
, Eds., Institute of Physics Press
, Bristol
, 1992
, pp. 255
-262
.74.
Melvin
, L. D.
, Rogowski
, R. S.
, Holben
, M. S.
, Namkung
, J. S.
, Kahl
, K.
, and Sirkis
, J.
, “Evaluation of Acrylate and Polyimide Coated Optical Fibers as Strain Sensors in Polymer Composites
,” Active Materials and Adaptive Structures
, G. J.
Knowles
, Ed., Institute of Physics Publishing
, Bristol
, 1992
, pp. 801
-804
.75.
Shyprykevich
, P.
, Fogg
, B. R.
, Murphy
, K. A.
, and Claus
, R. O.
, “Performance of Extrinsic Fabry-Perot Optical Fiber Strain Sensors in the Presence of Cyclic Loads
,” Smart Sensing, Processing, and Instrumentation
, SPIE
, Vol. 1918
, 1993
, pp. 388
-399
.76.
Blagojevich
, B.
, Tsaw
, W.
, McKwen
, K.
, and Measures
, R. M.
, “The Influence of Embedded Optical Fibers on the Interlaminar Fracture Toughness of Composite Materials
,” Review of Progress in Quantitative Nondestructive Evaluation
, Vol. 9
, 1990
, pp. 1213
-1217
.
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.