Abstract

A three-dimensional (3-D) progressive failure algorithm is developed where the Layerwise Laminate Theory of Reddy [1] is used for kinematic description. The finite element model based on the layerwise theory predicts both inplane and interlaminar stresses with the same accuracy as that of a conventional 3-D finite element model. Besides, it provides a convenient format for modeling the 3-D stress fields in composite laminates [2]. The progressive failure algorithm is based on the assumption that the material behaves like a stable progressively fracturing solid. The stiffness reduction is carried out at the reduced integration gauss points of the finite element mesh depending on the mode of failure. A parametric study is conducted to investigate the effect of out-of-plane material properties, 3-D stiffness reduction methods, and boundary conditions on the failure loads and strains of a composite laminate under axial extension. The results indicate that different parameters have a different degree of influence on the failure loads and strains. Finally, the predictive ability of various phenomenological failure criteria is evaluated in the light of experimental results available in the literature, and the predictions of the Layerwise Laminate Theory (LWLT) are compared with those of the First-Order Shear Deformation Theory (FSDT). The study concludes that a 3-D stress analysis is necessary to predict accurately the failure behavior of composite laminates.

References

1.
Reddy
,
J. N.
, “
On Refined Computational Models of Composite Laminates
,”
International Journal for Numerical Methods in Engineering
 0029-5981 https://doi.org/10.1002/nme.1620270210, Vol.
27
,
1989
, pp.
361
-
382
.
2.
Robbins
,
D. H.
and
Reddy
,
J. N.
, “
Modeling of Thick Composites Using a Layerwise Laminate Theory
,”
International Journal for Numerical Methods in Engineering
 0029-5981 https://doi.org/10.1002/nme.1620360407, Vol.
36
,
1993
, pp.
655
-
677
.
3.
Reddy
,
J. N.
and
Pandey
,
A. K.
, “
A First Ply Failure Analysis of Composite Laminates
,”
Computers and Structures
, Vol.
25
,
03
1987
, pp.
371
-
393
.
4.
Reddy
,
Y. S. N.
and
Reddy
,
J. N.
, “
Linear and Non-linear Failure Analysis of Composite Laminates with Transverse Shear
,”
Composites Science and Technology
 0266-3538, Vol.
44
,
1992
, pp.
227
-
255
.
5.
Petit
,
P. H.
and
Waddoups
,
M. E.
, “
A Method of Predicting the Nonlinear Behavior of Laminated Composites
,”
Journal of Composite Materials
 0021-9983, Vol.
3
,
02
1969
.
6.
Sandhu
,
R. S.
,
Sendeckyj
,
G. P.
, and
Gallo
,
R. L.
, “
Modelling of the Failure Process in Notched Laminates
,” in
Proceedings of the IUTAM Symposium on Mechanics of Composite Materials
,
VPI&SU
, 16–19 Aug. 1982.
7.
Tsai
,
S. W.
and
Azzi
,
V. D.
, “
Strength of Laminated Composite Materials
,”
AIAA Journal
 0001-1452, Vol.
4
, No.
2
,
02
1966
, pp.
296
-
301
.
8.
Chang
,
F. K.
and
Chang
,
K. Y.
, “
Post-Failure Analysis of Bolted Composite Joints Failed in Tension and Shear-Out Mode
,”
Journal of Composite Materials
 0021-9983, Vol.
21
,
09
1987
.
9.
Chang
,
F. K.
and
Chang
,
K. Y.
, “
A Progressive Damage Model for Laminated Composites Containing Stress Concentrations
,”
Journal of Composite Materials
 0021-9983, Vol.
21
,
09
1987
.
10.
Chang
,
F. K.
,
Lessard
,
L.
, and
Tang
,
J. M.
, “
Compression Response of Laminated Composites Containing an Open Hole
,”
SAMPE Quarterly
 0036-0821, Vol.
19
,
07
1988
.
11.
Hahn
,
H. T.
and
Tsai
,
S. W.
, “
Nonlinear Elastic Behavior of Unidirectional Composite Laminates
,”
Journal of Composite Materials
 0021-9983, Vol.
7
,
07
1973
.
12.
Yamada
,
S. E.
and
Sun
,
C. T.
, “
Failure Strength of Nonlinearly Elastic Composite Laminates Containing a Pin Loaded Hole
,”
Journal of Composite Materials
 0021-9983, Vol.
18
,
07
1984
.
13.
Tan
,
S. C.
, “
A Progressive Failure Model of Composite Laminates Containing Openings
,”
Journal of Composite Materials
 0021-9983, Vol.
25
,
1991
, pp.
556
-
577
.
14.
Ochoa
,
O. O.
and
Engblom
,
J. J.
, “
Analysis of Progressive Failure in Composites
,”
Composites Science and Technology
 0266-3538, Vol.
28
,
1987
, pp.
87
-
102
.
15.
Hashin
,
Z.
, “
Failure Criteria for Unidirectional Fiber Composites
,”
Journal of Applied Mechanics
 0021-8936, Vol.
47
,
1980
, pp.
329
-
334
.
16.
Lee
,
J. D.
, “
Three Dimensional Finite Element Analysis of Damage Accumulation in Composite Laminate
,”
Computers & Structures
, Vol.
15
, No.
3
,
1982
, pp.
335
-
350
.
17.
Sun
,
C. T.
, “
Failure Analysis of Laminated Composites by Using Iterative Three Dimensional Finite Element Method
,”
Computers & Structures
, Vol.
33
, No.
1
,
1989
, pp.
41
-
47
.
18.
Sun
,
C. T.
and
Zhou
,
S. G.
, “
Failure of Quasi-Isotropic Laminates with Free Edges
,”
Journal of Reinforced Plastics and Composites
 0731-6844, Vol.
7
,
11
1988
, pp.
515
-
557
.
19.
Hill
,
R.
, “
A Theory of Yielding and Plastic Flow of Anisotropic Metals
,”
Proceedings of the Royal Society
, Series A, Vol.
193
,
1948
, p. 281.
20.
Jones
,
R. M.
,
Mechanics of Composite Materials
,
Technomic Publishing Co.
,
Lancaster, PA
,
1976
.
21.
Delaware Handbook on Composite Materials
,
Technomic Publishing Co.
,
Lancaster, PA
,
1976
.
22.
Dougill
,
J. W.
, “
On Stable Progressively Fracturing Solids
,”
Journal of Applied Mathematics and Physics (ZAMP)
, Vol.
27
,
1976
, pp.
423
-
437
.
23.
Tsai
,
S. W.
and
Wu
,
E. M.
, “
A General Theory of Strength for Anisotropic Materials
,”
Journal of Composite Materials
 0021-9983, Vol.
5
,
01
1971
, pp.
58
-
80
.
This content is only available via PDF.
You do not currently have access to this content.