Abstract

The durability of concrete structures in a marine environment depends on the migration speed of chloride ions in concrete. In general, marine concrete is under the effect of multiple mechanisms of chloride ions and external load (increase the density of internal cracks and affect chloride ion transport), and the single transmission mechanism or calculation model under the condition of external load has certain limitations. Simultaneously, the transport of chloride ions in concrete is closely related to its pore structure. Therefore, a mesoscopic model was presented based on changes of pore structures for calculating the influence of different transmission mechanisms on chloride and external loads. The results show that the new mesoscopic model has high accuracy in the short period of time and the comprehensive calculation of the simulation on chloride ion transport (especially for the presence of external loads).

References

1.
Sun
G.
,
Zhang
Y.
,
Sun
W.
,
Liu
Z.
, and
Wang
C.
, “
Multi-scale Prediction of the Effective Chloride Diffusion Coefficient of Concrete
,”
Construction and Building Materials
25
, no. 
10
(October
2011
):
3820
3831
, https://doi.org/10.1016/j.conbuildmat.2011.03.041
2.
Zhou
Y.-W.
,
Fan
Z.-H.
,
Du
J.
,
Sui
L.-L.
, and
Xing
F.
, “
Bond Behavior of FRP-to-Concrete Interface under Sulfate Attack: An Experimental Study and Modeling of Bond Degradation
,”
Construction and Building Materials
85
(June
2015
):
9
21
, https://doi.org/10.1016/j.conbuildmat.2015.03.031
3.
Tang
L.-P.
, “
Engineering Expression of the ClinConc Model for Prediction of Free and Total Chloride Ingress in Submerged Marine Concrete
,”
Cement and Concrete Research
38
, nos. 
8–9
(August
2008
):
1092
1097
, https://doi.org/10.1016/j.cemconres.2008.03.008
4.
Zhang
M.-Z.
,
Ye
G.
, and
van Breugel
K.
, “
Multiscale Lattice Boltzmann-Finite Element Modelling of Chloride Diffusivity in Cementitious Materials. Part I: Algorithms and Implementation
,”
Mechanics Research Communications
58
(June
2014
):
53
63
, https://doi.org/10.1016/j.mechrescom.2013.09.002
5.
Zhang
M.-Z.
,
Ye
G.
, and
Breugel
K. v.
, “
Multiscale Lattice Boltzmann-Finite Element Modelling of Chloride Diffusivity in Cementitious Materials. Part II: Simulation Results and Validation
,”
Mechanics Research Communications
58
(June
2014
):
64
72
, https://doi.org/10.1016/j.mechrescom.2014.01.001
6.
Truc
O.
,
Ollivier
J.-P.
, and
Nilsson
L. O.
, “
Numerical Simulation of Multi-species Diffusion
,”
Materials and Structures
33
, no. 
9
(November
2000
):
566
573
, https://doi.org/10.1007/BF02480537
7.
Boddy
A.
,
Bentz
E.
,
Thomas
M. D. A.
, and
Hooton
R. D.
, “
An Overview and Sensitivity Study of a Multimechanistic Chloride Transport Model
,”
Cement and Concrete Research
29
, no. 
6
(June
1999
):
827
837
, https://doi.org/10.1016/S0008-8846(99)00045-9
8.
Glasser
F. P.
,
Marchand
J.
, and
Samson
E.
, “
Durability of Concrete—Degradation Phenomena Involving Detrimental Chemical Reactions
,”
Cement and Concrete Research
38
, no. 
2
(February
2008
):
226
246
, https://doi.org/10.1016/j.cemconres.2007.09.015
9.
Cook
R. A.
and
Hover
K. C.
, “
Mercury Intrusion Porosimetry of Cement-Based Materials and Associated Correction Factors
,”
Construction and Building Materials
7
, no. 
4
(December
1993
):
231
240
, https://doi.org/10.1016/0950-0618(93)90007-Y
10.
Kaufmann
J.
,
Winnefeld
F.
, and
Zurbriggen
R.
, “
Polymer Dispersions and Their Interaction with Mortar Constituents and Ceramic Tile Surfaces Studied by Zeta-Potential Measurements and Atomic Force Microscopy
,”
Cement and Concrete Composites
34
, no. 
5
(May
2012
):
604
611
, https://doi.org/10.1016/j.cemconcomp.2012.01.012
11.
Tran
M. V.
,
Stitmannaithum
B.
, and
Nawa
T.
, “
Chloride Penetration into Concrete Using Various Cement Types under Flexural Cyclical Load and Tidal Environment
,”
The IES Journal Part A: Civil & Structural Engineering
2
, no. 
3
(
2009
):
201
214
.
12.
Abyaneh
S. D.
,
Wong
H. S.
, and
Buenfeld
N. R.
, “
Modelling the Diffusivity of Mortar and Concrete Using a Three-Dimensional Mesostructure with Several Aggregate Shapes
,”
Computational Materials Science
78
, no. 
5
(October
2013
):
63
73
, https://doi.org/10.1016/j.commatsci.2013.05.024
13.
Wang
J.-J.
,
Basheer
P.
,
Nanukuttan
S. V.
,
Long
A. E.
, and
Bai
Y.
, “
Influence of Service Loading and the Resulting Micro-cracks on Chloride Resistance of Concrete
,”
Construction and Building Materials
108
(April
2016
):
56
66
, https://doi.org/10.1016/j.conbuildmat.2016.01.005
14.
Picandet
V.
,
Khelidj
A.
, and
Bastian
G.
, “
Effect of Axial Compressive Damage on the Gas Permeability of Ordinary and High-Performance Concrete
,”
Cement and Concrete Research
31
, no. 
11
(November
2001
):
1525
1532
, https://doi.org/10.1016/S0008-8846(01)00546-4
15.
Tegguer
A. D.
,
Bonnet
S.
,
Khelidj
A.
, and
Baroghel-Bouny
V.
, “
Effect of Uniaxial Compressive Loading on Gas Permeability and Chloride Diffusion Coefficient of Concrete and Their Relationship
,”
Cement and Concrete Research
52
(October
2013
):
131
139
, https://doi.org/10.1016/j.cemconres.2013.05.013
16.
Collepardi
M.
,
Marcialis
A.
, and
Turriziani
R.
, “
The Kinetics of Penetration of Chloride Ions into the Concrete
,”
Il Cemento
4
(
1970
):
157
164
.
17.
Collepardi
M.
,
Marcialis
A.
, and
Turriziani
R.
, “
Penetration of Chloride Ions into Cement Pastes and Concretes
,”
Journal of the American Ceramics Society
55
, no. 
10
(October
1972
):
534
535
, https://doi.org/10.1111/j.1151-2916.1972.tb13424.x
18.
Mangat
P. S.
and
Limbachiya
M. C.
, “
Effect of Initial Curing on Chloride Diffusion in Concrete Repair Materials
,”
Cement and Concrete Research
29
, no. 
9
(September
1999
):
1475
1485
, https://doi.org/10.1016/S0008-8846(99)00130-1
19.
Thomas
M. D. A.
and
Bamforth
P. B.
, “
Modelling Chloride Diffusion in Concrete
,”
Cement and Concrete Research
29
, no. 
4
(April
1999
):
487
495
, https://doi.org/10.1016/S0008-8846(98)00192-6
20.
Bentz
D. P.
,
Clifton
J. R.
, and
Snyder
K. A.
, “
Predicting Service Life of Chloride-Exposed Steel-Reinforced Concrete
,”
Concrete International
18
, no. 
12
(
1996
):
42
47
.
21.
Aït-Mokhtar
A.
,
Belarbi
R.
,
Benboudjema
F.
,
Burlion
N.
,
Capra
B.
,
Carcassès
M.
,
Colliat
J.-B.
, et al., “
Experimental Investigation of the Variability of Concrete Durability Properties
,”
Cement and Concrete Research
45
(March
2013
):
21
36
, https://doi.org/10.1016/j.cemconres.2012.11.002
22.
Deby
F.
,
Carcassès
M.
, and
Sellier
A.
, “
Simplified Models for the Engineering of Concrete Formulations in a Marine Environment through a Probabilistic Method
,”
European Journal of Environmental and Civil Engineering
16
, nos. 
3–4
(March
2012
):
362
374
, https://doi.org/10.1080/19648189.2012.667716
23.
Deby
F.
,
Carcassès
M.
, and
Sellier
A.
, “
Probabilistic Approach for Durability Design of Reinforced Concrete in Marine Environment
,”
Cement and Concrete Research
39
, no. 
5
(May
2009
):
466
471
, https://doi.org/10.1016/j.cemconres.2009.03.003
24.
Kassir
M. K.
and
Ghosn
M.
, “
Chloride-Induced Corrosion of Reinforced Concrete Bridge Decks
,”
Cement and Concrete Research
32
, no. 
1
(January
2002
):
139
143
, https://doi.org/10.1016/S0008-8846(01)00644-5
25.
Page
C. L.
,
Short
N. R.
, and
El
A.
Tarras, “
Diffusion of Chloride Ions in Hardened Cement Pastes
,”
Cement and Concrete Research
11
, no. 
3
(May
1981
):
395
406
, https://doi.org/10.1016/0008-8846(81)90111-3
26.
Atkinson
A.
and
Nickerson
A. K.
, “
The Diffusion of Ions through Water-Saturated Cement
,”
Journal of Materials Science
19
, no. 
9
(September
1984
):
3068
3078
, https://doi.org/10.1007/BF01026986
27.
Sergi
G.
,
Yu
S. W.
, and
Page
C. L.
, “
Diffusion of Chloride and Hydroxyl Ions in Cementitious Materials Exposed to a Saline Environment
,”
Magazine of Concrete Research
44
, no. 
158
(March
1992
):
63
69
, https://doi.org/10.1680/macr.1992.44.158.63
28.
Delagrave
A.
,
Marchand
J.
, and
Samson
E.
, “
Prediction of Diffusion Coefficients in Cement-Based Materials on the Basis of Migration Experiments
,”
Cement and Concrete Research
26
, no. 
12
(December
1996
):
1831
1842
, https://doi.org/10.1016/S0008-8846(96)00170-6
29.
Xia
J.
and
Li
L.
, “
Numerical Simulation of Ionic Transport in Cement Paste under the Action of Externally Applied Electric Field
,”
Construction and Building Materials
39
(February
2013
):
51
59
, https://doi.org/10.1016/j.conbuildmat.2012.05.036
30.
Julio-Betancourt
G. A.
and
Hooton
R. D.
, “
Study of the Joule Effect on Rapid Chloride Permeability Values and Evaluation of Related Electrical Properties of Concretes
,”
Cement and Concrete Research
34
, no. 
6
(June
2004
):
1007
1015
, https://doi.org/10.1016/j.cemconres.2003.11.012
31.
Yang
C. C.
and
Cho
S. W.
, “
The Relationship between Chloride Migration Rate for Concrete and Electrical Current in Steady State Using the Accelerated Chloride Migration Test
,”
Materials and Structures
37
, no. 
7
(
2004
):
456
463
, https://doi.org/10.1007/BF02481582
32.
Shi
C.
, “
Effect of Mixing Proportions of Concrete on Its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results
,”
Cement and Concrete Research
34
, no. 
3
(March
2004
):
537
545
, https://doi.org/10.1016/j.cemconres.2003.09.007
33.
Andrade
C.
,
Sanjuán
M. A.
,
Recuero
A.
, and
Río
O.
, “
Calculation of Chloride Diffusivity in Concrete from Migration Experiments, in Non Steady-State Conditions
,”
Cement and Concrete Research
24
, no. 
7
(
1994
):
1214
1228
, https://doi.org/10.1016/0008-8846(94)90106-6
34.
Krabbenhøft
K.
and
Krabbenhøft
J.
, “
Application of the Poisson–Nernst–Planck Equations to the Migration Test
,”
Cement and Concrete Research
38
, no. 
1
(January
2008
):
77
88
, https://doi.org/10.1016/j.cemconres.2007.08.006
35.
Samson
E.
and
Marchand
J.
, “
Numerical Solution of the Extended Nernst-Planck Model
,”
Journal of Colloid and Interface Science
215
, no. 
1
(July
1999
):
1
8
, https://doi.org/10.1006/jcis.1999.6145
36.
Spiesz
P.
and
Brouwers
H. J. H.
, “
Influence of the Applied Voltage on the Rapid Chloride Migration (RCM) Test
,”
Cement and Concrete Research
42
, no. 
8
(August
2012
):
1072
1082
, https://doi.org/10.1016/j.cemconres.2012.04.007
37.
Spiesz
P.
and
Brouwers
H. J. H.
, “
The Apparent and Effective Chloride Migration Coefficients Obtained in Migration Tests
,”
Cement and Concrete Research
48
(June
2013
):
116
127
, https://doi.org/10.1016/j.cemconres.2013.02.005
38.
Li
L.
,
Easterbrook
D.
,
Xia
J.
, and
Jin
W.-L.
, “
Numerical Simulation of Chloride Penetration in Concrete in Rapid Chloride Migration Tests
,”
Cement and Concrete Composites
63
(October
2015
):
113
121
, https://doi.org/10.1016/j.cemconcomp.2015.09.004
39.
Ben
L.
,
Mao
J.-Z.
,
Nawa
T.
, and
Liu
Z.-M.
, “
Mesoscopic Chloride Ion Diffusion Model of Marine Concrete Subjected to Freeze-Thaw Cycles
,”
Construction and Building Materials
125
(October
2016
):
337
351
, https://doi.org/10.1016/j.conbuildmat.2016.08.052
40.
Test Methods of Concrete and Cement for Highway Engineering
, JTG E30-2005 (
Beijing
:
Ministry of Communications Highway Science Research Institute
,
2005
).
41.
Standard for Test Method of Mechanical Properties on Ordinary Concrete
, GB/T 50081-2002 (
Beijing
:
Ministry of Construction of the People’s Republic of China
,
2003
).
42.
Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete
, GB/T 50082-2009 (
Beijing
:
Ministry of Housing and Urban-Rural Development
,
2010
).
This content is only available via PDF.
You do not currently have access to this content.