Abstract

Over the last 20 years, remarkable advances have taken place in the research on reactive powder concrete (RPC). However, because of the high contents of cement and silica fume (SF) usually used in those types of concrete, the cost and environmental impact of RPC is considerably higher than conventional concrete. Hence, the use of supplementary cementitious materials as partial substitution of cement and SF has been an object of great interest by the scientific community. However, the replacement of cement and SF can result in the deterioration of certain properties of RPC, such as the early strength; however, RPC usually needs great amounts of cement and SF. This work presents a study to analyze the effect of metakaolin (MK) as a partial substitute of cement in a previously optimized mixture of RPC using statistical tools such central composite design, main effect plot analysis, and response surface methodology. In addition to MK, supplementary cementitious materials such as SF, limestone powder and recycled glass powder, and fine Type III cement were used. Based on the laboratory experiments results and statistical analysis, it was concluded than MK develops a high activity in the hydration process of RPC, helping it reach high strength at early ages, such as 1 and 7 days, which may be of interest for applications such as the connection of prefabricated elements or accelerated bridge construction. However, the effect of the partial substitution of Type III cement by MK on 28-day compressive strength was nonsignificant. Moreover, the MK inclusion in RPC provides a significant decrease in workability as the amount of MK increases.

References

1.
Richard
P.
and
Cheyrezy
M.
, “
Composition of Reactive Powder Concretes
,”
Cement and Concrete Research
25
, no. 
7
(October
1995
):
1501
1511
, https://doi.org/10.1016/0008-8846(95)00144-2
2.
Song
J.
and
Liu
S.
, “
Properties of Reactive Powder Concrete and Its Application in Highway Bridge
,”
Advances in Materials Science and Engineering
2016
(February
2016
): 5460241, https://doi.org/10.1155/2016/5460241
3.
Abellan
J.
,
Torres
N.
,
Núñez
A.
, and
Fernández
J.
, “
Ultra High Preformance Fiber Reinforced Concrete: State of the Art, Applications and Possibilities into the Latin American Market
” (paper presentation, 38th Jornadas Sudamericanas de Ingeniería Estructural, Lima, Peru, October 24,
2018
).
4.
Soliman
N. A.
and
Tagnit-Hamou
A.
, “
Using Particle Packing and Statistical Approach to Optimize Eco-Efficient Ultra-High-Performance Concrete
,”
ACI Materials Journal
114
, no. 
6
(November
2017
):
847
858
, https://doi.org/10.14359/51701001
5.
Ghafari
E.
,
Costa
H.
, and
Júlio
E.
, “
RSM-Based Model to Predict the Performance of Self-Compacting UHPC Reinforced with Hybrid Steel Micro-fibers
,”
Construction and Building Materials
66
(June
2014
):
375
383
, https://doi.org/10.1016/j.conbuildmat.2014.05.064
6.
Schmidt
C.
and
Schmidt
M.
, “
‘Whitetopping’ of Asphalt and Concrete Pavements with Thin Layers of Ultra-High-Performance Concrete – Construction and Economic Efficiency
,” in
Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2012
),
921
928
.
7.
Abbas
S.
,
Nehdi
M. L.
, and
Saleem
M. A.
, “
Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges
,”
International Journal of Concrete Structures and Materials
10
, no. 
3
(June
2016
):
271
295
, https://doi.org/10.1007/s40069-016-0157-4
8.
Nehdi
M. L.
,
Abbas
S.
, and
Soliman
A. M.
, “
Exploratory Study of Ultra-High Performance Fiber Reinforced Concrete Tunnel Lining Segments with Varying Steel Fiber Lengths and Dosages
,”
Engineering Structures
101
(August
2015
):
733
742
, https://doi.org/10.1016/j.engstruct.2015.07.012
9.
Toledo-Filho
R. D.
,
Koenders
E. A. B.
,
Formagini
S.
, and
Fairbairn
E. M. R.
, “
Performance Assessment of Ultra High Performance Fiber Reinforced Cementitious Composites in View of Sustainability
,”
Materials & Design
36
(April
2012
):
880
888
, https://doi.org/10.1016/j.matdes.2011.09.022
10.
Abellan
J.
,
Torres
N.
,
Núñez
A.
, and
Fernández
J.
, “
Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones
” (paper presentation, Fourth Congreso Internacional de Ingenieria Civil, Havana, Cuba, November 30,
2018
).
11.
Soliman
N. A.
and
Tagnit-Hamou
A.
, “
Using Glass Sand as an Alternative for Quartz Sand in UHPC
,”
Construction and Building Materials
145
(August
2017
):
243
252
, https://doi.org/10.1016/j.conbuildmat.2017.03.187
12.
Kalny
M.
,
Kvasnicka
V.
, and
Komanec
J.
, “
First Practical Applications of the UHPC in the Czech Republic
,” in
Fourth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2016
),
147
148
.
13.
Tagnit-Hamou
A.
,
Soliman
N.
, and
Omran
A.
, “
Green Ultra-High-Performance Glass Concrete
” (paper presentation, First International Interactive Symposium on UHPC, Des Moines, IA, July 18,
2016
).
14.
Abellán
J.
,
Núñez
A.
, and
Arango
S.
, “
Pedestrian Bridge of UNAL in Manizales: A New UPHFRC Application in the Colombian Building Market
,” in
Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2020
),
43
44
.
15.
de Larrard
F.
and
Sedran
T.
, “
Mixture-Proportioning of High-Performance Concrete
,”
Cement and Concrete Research
32
, no. 
11
(November
2002
):
1699
1704
, https://doi.org/10.1016/S0008-8846(02)00861-X
16.
Kou
S. C.
and
Xing
F.
, “
The Effect of Recycled Glass Powder and Reject Fly Ash on the Mechanical Properties of Fibre-Reinforced Ultrahigh Performance Concrete
,”
Advances in Materials Science and Engineering
2012
(May
2012
): 263243, https://doi.org/10.1155/2012/263243
17.
Shi
C.
,
Wu
Z.
,
Xiao
J.
,
Wang
D.
,
Huang
Z.
, and
Fang
Z.
, “
A Review on Ultra High Performance Concrete: Part I. Raw Materials and Mixture Design
,”
Construction and Building Materials
101
(December
2015
):
741
751
, https://doi.org/10.1016/j.conbuildmat.2015.10.088
18.
Li
W.
,
Huang
Z.
,
Zu
T.
,
Shi
C.
,
Duan
W. H.
, and
Shah
S. P.
, “
Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete
,”
Journal of Materials in Civil Engineering
28
, no. 
1
(January
2016
): 04015068, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001327
19.
Ferdosian
I.
,
Camões
A.
, and
Ribeiro
M.
, “
High-Volume Fly Ash Paste for Developing Ultra-High Performance Concrete (UHPC)
,”
Ciência & Tecnologia dos Materiais
29
, no. 
1
(January–April
2017
):
e157
e161
, https://doi.org/10.1016/j.ctmat.2016.10.001
20.
Abellán García
J.
,
Fernandez Gómez
J.
, and
Torres Castellanos
N.
, “
Properties Prediction of Environmentally Friendly Ultra-High-Performance Concrete Using Artificial Neural Networks
,”
European Journal of Environmental and Civil Engineering
24
, no. 
6
(May
2020
): https://doi.org/10.1080/19648189.2020.1762749
21.
Abellán-García
J.
, “
Four-Layer Perceptron Approach for Strength Prediction of UHPC
,”
Construction and Building Materials
256
(May
2020
): 119465, https://doi.org/10.1016/j.conbuildmat.2020.119465
22.
Abellán
J.
,
Núñez
A.
,
Torres
N.
, and
Fernández
J.
, “
Development of Cost-Efficient UHPC with Local Materials in Colombia
,” in
Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2020
),
97
98
.
23.
Abellán
J.
,
Torres
N.
,
Núñez
A.
, and
Fernández
J.
, “
Quality Optimization of Low-Cost UHPC Using Micro Limestone Powder and Glass Flour
,”
Computers and Concrete
(in press).
24.
Abellán
J.
,
Fernández
J.
,
Torres
N.
, and
Núñez
A.
, “
Statistical Optimization of Ultra-High-Performance Glass Concrete
,”
ACI Materials Journal
117
, no. 
1
(January
2020
):
243
254
, https://doi.org/10.14359/51720292
25.
Abellán-García
J.
,
Núñez-López
A.
,
Torres Castellanos
N.
, and
Fernández-Gómez
J.
, “
Factorial Design of Reactive Concrete Powder Containing Electric Arc Slag Furnace and Recycled Glass Powder
,”
Dyna
87
, no. 
213
(April–June
2020
):
42
51
, https://doi.org/10.15446/dyna.v87n213.82655
26.
Abellán-García
J.
,
Núñez-López
A.
,
Torres Castellanos
N.
, and
Fernández-Gómez
J.
, “
Effect of FC3R on the Properties of Ultra-High-Performance Concrete with Recycled Glass
,”
Dyna
86
, no. 
211
(October–December
2019
):
84
93
, https://doi.org/10.15446/dyna.v86n211.79596
27.
Rai
B.
and
Wille
K.
, “
Development and Testing of High / Ultra-High Early Strength Concrete
,” in
Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2020
),
7
8
.
28.
Torres Castellanos
N.
,
Torres Agredo
J.
, and
Mejía
R.
, “
Resistance of Blended Concrete Containing an Industrial Petrochemical Residue to Chloride Ion Penetration and Carbonation
,”
Ingeniería e Investigacion
34
, no. 
1
(April
2014
):
11
16
, https://doi.org/10.15446/ing.investig.v34n1.38730
29.
Torregrosa
E. C.
, “
Dosage Optimization and Bolted Connections for UHPFRC Ties
” (PhD thesis,
Polytechnic University of Valencia
,
2013
).
30.
Ahmad
S.
,
Hakeem
I.
, and
Maslehuddin
M.
, “
Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand
,”
Advances in Materials Science and Engineering
2014
(August
2014
): 713531, https://doi.org/10.1155/2014/108797
31.
Vaitkevičius
V.
,
Šerelis
E.
, and
Hilbig
H.
, “
The Effect of Glass Powder on the Microstructure of Ultra High Performance Concrete
,”
Construction and Building Materials
68
(October
2014
):
102
109
, https://doi.org/10.1016/j.conbuildmat.2014.05.101
32.
Huang
Z.
and
Cao
F.
, “
Effects of Nano-materials on the Performance of UHPC
,”
Materials Review
26
, no. 
9
(
2012
):
136
141
.
33.
Šerelis
E.
,
Vaitkevičius
V.
, and
Kerševičius
V.
, “
Mechanical Properties and Microstructural Investigation of Ultra-High Performance Glass Powder Concrete
,”
Journal of Sustainable Architecture and Civil Engineering
14
, no. 
1
(June
2016
):
5
11
, https://doi.org/10.5755/j01.sace.14.1.14478
34.
Soliman
N. A.
and
Tagnit-Hamou
A.
, “
Partial Substitution of Silica Fume with Fine Glass Powder in UHPC: Filling the Micro Gap
,”
Construction and Building Materials
139
(May
2017
):
374
383
, https://doi.org/10.1016/j.conbuildmat.2017.02.084
35.
Arizzi
A.
and
Cultrone
G.
, “
Comparing the Pozzolanic Activity of Aerial Lime Mortars Made with Metakaolin and Fluid Catalytic Cracking Catalyst Residue: A Petrographic and Physical-Mechanical Study
,”
Construction and Building Materials
184
(September
2018
):
382
390
, https://doi.org/10.1016/j.conbuildmat.2018.07.002
36.
Mehta
P. K.
, “
Global Concrete Industry Sustainability
,”
ACI Concrete International
31
, no. 
2
(February
2009
):
45
48
.
37.
Tafraoui
A.
,
Escadeillas
G.
,
Lebaili
S.
, and
Vidal
T.
, “
Metakaolin in the Formulation of UHPC
,”
Construction and Building Materials
23
, no. 
2
(February
2009
):
669
674
, https://doi.org/10.1016/j.conbuildmat.2008.02.018
38.
Li
Z.
and
Rangaraju
P. R.
, “
Development of UHPC Using Ternary Blends of Ultra-Fine Class F Fly Ash, Meta-kaolin and Portland Cement
” (paper presentation, First International Interactive Symposium on UHPC, Des Moines, IA, July 18,
2016
).
39.
R Core Team “
R: A Language and Environment for Statistical Computing
,” The R Foundation,
2018
, http://web.archive.org/web/20200604224634/https://www.r-project.org/
40.
Roth
T.
, “
Working with the qualityTools Package
,” Quality Tools in R,
2017
, http://web.archive.org/web/20200604225008/http://www.r-qualitytools.org/
41.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
, ASTM C618-19 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2019
), https://doi.org/10.1520/C0618-19
42.
Eriksson
L.
,
Johansson
E.
,
Kettaneh-Wold
N.
,
Wikström
C.
, and
Wold
S.
,
Design of Experiments: Principles and Applications
(
Umeå, Sweden
:
Umetrics Academy
,
2000
).
43.
Upasani
R. S.
and
Banga
A. K.
, “
Response Surface Methodology to Investigate the Iontophoretic Delivery of Tacrine Hydrochloride
,”
Pharmaceutical Research
21
, no. 
12
(December
2004
):
2293
2299
, https://doi.org/10.1007/s11095-004-7682-6
44.
Montgomery
D. C.
,
Design and Analysis of Experiments
(
Hoboken, NJ
:
Wiley
,
2006
).
45.
Branchu
S.
,
Forbes
R. T.
,
York
P.
, and
Nyqvist
H.
, “
A Central Composite Design to Investigate the Thermal Stabilization of Lysozyme
,”
Pharmaceutical Research
16
, no. 
5
(May
1999
):
702
708
, https://doi.org/10.1023/A:1018876625126
46.
Funk
J. E.
and
Dinger
D.
,
Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing
(
Berlin, Germany
:
Springer Science & Business Media
,
2013
).
47.
Standard Test Method for Flow of Hydraulic Cement Mortar
, ASTM C1437-15 (
West Conshohocken, PA
:
ASTM International
, approved December 1,
2015
), https://doi.org/10.1520/C1437-15
48.
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)
, ASTM C109/C109M-20a (
West Conshohocken, PA
:
ASTM International
, approved February 15,
2020
), https://doi.org/10.1520/C0109_C0109M-20A
49.
Bharath
K. N.
,
Manjunatha
G. B.
, and
Santhosh
K.
, “
Failure Analysis and the Optimal Toughness Design of Sheep–Wool Reinforced Epoxy Composites
,” in
Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites
, ed.
Jawaid
M.
,
Thariq
M.
, and
Saba
N.
(
Sawston, UK
:
Woodhead Publishing
,
2019
),
97
107
, https://doi.org/10.1016/B978-0-08-102293-1.00005-X
50.
Restrepo Gutierrez
J. C.
,
Restrepo Baena
O. J.
, and
Tobón
I.
, “
Efectos de la adición de metacaolín en el cemento pórtland
,”
Dyna
73
, no. 
150
(November
2006
):
131
141
.
51.
Kinuthia
J.
,
Wild
S.
,
Sabir
B. B.
, and
Bai
J.
, “
Self-Compensating Autogenous Shrinkage in Portland Cement—Metakaolin—Fly Ash Pastes
,”
Advances in Cement Research
12
, no. 
1
(January
2000
):
35
43
, https://doi.org/10.1680/adcr.2000.12.1.35
52.
Brooks
J. J.
and
Johari
M. A.
, “
Effect of Metakaolin on Creep and Shrinkage of Concrete
,”
Cement and Concrete Composites
23
, no. 
6
(December
2001
):
495
502
, https://doi.org/10.1016/S0958-9465(00)00095-0
53.
Torres
N.
Castellanos, “
Estudio en estado fresco y endurecido de concretos adicionados con catalizador de craqueo catalítico usado (FCC)
” (PhD thesis,
Universidad Nacional de Colombia
,
2014
).
54.
Puertas
F.
,
Santos
H.
,
Palacios
M.
, and
Martínez-Ramírez
S.
, “
Polycarboxylate Superplasticiser Admixtures: Effect on Hydration, Microstructure and Rheological Behaviour in Cement Pastes
,”
Advances in Cement Research
17
, no. 
2
(April
2005
):
77
89
, https://doi.org/10.1680/adcr.2005.17.2.77
55.
Kubens
S.
,
Interaction of Cement and Admixtures and Its Influence on Rheological Properties
(
Göttingen, Germany
:
Cuvillier Verlag
,
2010
).
56.
Heikal
M.
,
Morsy
M. S.
, and
Aiad
I.
, “
Effect of Polycarboxylate Superplasticizer on Hydration Characteristics of Cement Pastes Containing Silica Fume
,”
Ceramics – Silikáty
50
, no. 
1
(January
2006
):
5
14
.
57.
Wille
K.
,
Naaman
A. E.
,
El-Tawil
S.
, and
Parra-Montesinos
G. J.
, “
Ultra-High Performance Concrete and Fiber Reinforced Concrete: Achieving Strength and Ductility without Heat Curing
,”
Materials and Structures
45
, no. 
3
(March
2012
):
309
324
, https://doi.org/10.1617/s11527-011-9767-0
58.
de Larrard
F.
,
Concrete Mixture Proportioning: A Scientific Approach
(
London
:
CRC Press
,
1999
), https://doi.org/10.1201/9781482272055
59.
The Self-Compacting Concrete European Project Group, The European Guidelines for Self-Compacting Concrete
(
Brussels, Belgium
:
International Bureau for Precast Concrete
,
2005
).
60.
Poon
C.-S.
,
Lam
L.
,
Kou
S. C.
,
Wong
Y.-L.
, and
Wong
R.
, “
Rate of Pozzolanic Reaction of Metakaolin in High-Performance Cement Pastes
,”
Cement and Concrete Research
31
, no. 
9
(September
2001
):
1301
1306
, https://doi.org/10.1016/S0008-8846(01)00581-6
61.
Khatib
J. M.
and
Wild
S.
, “
Pore Size Distribution of Metakaolin Paste
,”
Cement and Concrete Research
26
, no. 
10
(October
1996
):
1545
1553
, https://doi.org/10.1016/0008-8846(96)00147-0
62.
Malhotra
V. M.
and
Mehta
P. K.
,
High-Perfomance, High-Volume Fly Ash Concrete: Materials, Mixture Proportioning, Properties, Construction Practice, and Case Histories
(
Ottawa, Canada
:
Supplementary Cementing Materials for Sustainable Development
,
2002
).
This content is only available via PDF.
You do not currently have access to this content.