Abstract

Fracture and crack propagation in various materials have always attracted the attention of researchers. Therefore, an investigation of the fracture of construction steel as one of the most extensively used materials in the industry is of necessity. Numerical modeling has been always a complementary aid to the laboratory sample analysis. One important issue is to study the behavior of laboratory specimens based on their dimensions, which finds further significance in fracture problems. In the current research, the effect of sample thickness on the crack behavior is investigated via a compact tension specimen. Accordingly, using numerical result validation, the behavior of the numerical samples along the thickness is examined and used as a complement to the experimental results. By modeling and analyzing numerical samples with different thicknesses (0.1 < B/W < 2), an equation is proposed. The equation can be used to determine in what percentage of the thickness from the free edge the behavior is either plane stress or plane strain.

References

1.
Hutchinson
J. W.
, “
Plastic Stress and Strain Fields at a Crack Tip
,”
Journal of the Mechanics and Physics of Solids
16
, no. 
5
(September
1968
):
337
342
, https://doi.org/10.1016/0022-5096(68)90021-5
2.
Rice
J.
and
Rosengren
G. F.
, “
Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material
,”
Journal of the Mechanics and Physics of Solids
16
, no. 
1
(January
1968
):
1
12
, https://doi.org/10.1016/0022-5096(68)90013-6
3.
Levy
N.
,
Marcal
P. V.
,
Ostergren
W. J.
, and
Rice
J. R.
, “
Small Scale Yielding near a Crack in Plane Strain: A Finite Element Analysis
,”
International Journal of Fracture Mechanics
7
, no. 
2
(June
1971
):
143
156
, https://doi.org/10.1007/BF00183802
4.
Narasimhan
R.
and
Rosakis
A. J.
, “
Three-Dimensional Effects near a Crack Tip in a Ductile Three-Point Bend Specimen: Part I—A Numerical Investigation
,”
Journal of Applied Mechanics
57
, no. 
3
(September
1990
):
607
617
, https://doi.org/10.1115/1.2897066
5.
Zehnder
A. T.
and
Rosakis
A. J.
, “
Three-Dimensional Effects near a Crack Tip in a Ductile Three-Point Bend Specimen: Part II—An Experimental Investigation Using Interferometry and Caustics
,”
Journal of Applied Mechanics
57
, no. 
3
(September
1990
):
618
626
, https://doi.org/10.1115/1.2897067
6.
Delorenzi
H. G.
and
Shih
C. D.
, “
3-D Elastic-Plastic Investigation of Fracture Parameters in Side-Grooved Compact Specimen
,”
International Journal of Fracture
21
, no. 
3
(March
1983
):
195
220
, https://doi.org/10.1007/BF00963388
7.
Lai
M. O.
and
Ferguson
W. G.
, “
Effect of Specimen Thickness on Fracture Toughness
,”
Engineering Fracture Mechanics
23
, no. 
4
(
1986
):
649
659
, https://doi.org/10.1016/0013-7944(86)90112-8
8.
Henry
B.
and
Luxmoore
A.
, “
The Stress Triaxiality Constraint and the Q-Value as a Ductile Fracture Parameter
,”
Engineering Fracture Mechanics
57
, no. 
4
(July
1997
):
375
390
, https://doi.org/10.1016/S0013-7944(97)00031-3
9.
Wang
J.
,
Guo
W.-L.
, and
Shen
Y.-P.
, “
The Shape and Size of Crack Tip Plastic Zones under Triaxial Stress Constraint
,”
International Journal of Fracture
80
, no. 
4
(December
1996
):
R61
R68
, https://doi.org/10.1007/BF00018517
10.
Guo
W.
, “
Three-Dimensional Analyses of Plastic Constraint for Through-Thickness Cracked Bodies
,”
Engineering Fracture Mechanics
62
, nos. 
4–5
(March
1999
):
383
407
, https://doi.org/10.1016/S0013-7944(98)00102-7
11.
Guo
W.
, “
Elastoplastic Three Dimensional Crack Border Field—I. Singular Structure of the Field
,”
Engineering Fracture Mechanics
46
, no. 
1
(September
1993
):
93
104
, https://doi.org/10.1016/0013-7944(93)90306-D
12.
Lin
X. B.
and
Smith
R. A.
, “
Finite Element Modelling of Fatigue Crack Growth of Surface Cracked Plates: Part I: The Numerical Technique
,”
Engineering Fracture Mechanics
63
, no. 
5
(July
1999
):
503
522
, https://doi.org/10.1016/S0013-7944(99)00040-5
13.
Lin
X. B.
and
Smith
R. A.
, “
Finite Element Modelling of Fatigue Crack Growth of Surface Cracked Plates: Part II: Crack Shape Change
,”
Engineering Fracture Mechanics
63
, no. 
5
(July
1999
):
523
540
, https://doi.org/10.1016/S0013-7944(99)00041-7
14.
Lin
X. B.
and
Smith
R. A.
, “
Finite Element Modelling of Fatigue Crack Growth of Surface Cracked Plates: Part III: Stress Intensity Factor and Fatigue Crack Growth Life
,”
Engineering Fracture Mechanics
63
, no. 
5
(July
1999
):
541
556
, https://doi.org/10.1016/S0013-7944(99)00042-9
15.
Berto
F.
,
Lazzarin
P.
, and
Kotousov
A.
, “
On Higher Order Terms and Out-of-Plane Singular Mode
,”
Mechanics of Materials
43
, no. 
6
(June
2011
):
332
341
, https://doi.org/10.1016/j.mechmat.2011.03.004
16.
Berto
F.
,
Lazzarin
P.
,
Kotousov
A.
, and
Pook
L. P.
, “
Induced Out-of-Plane Mode at the Tip of Blunt Lateral Notches and Holes under In-Plane Shear Loading
,”
Fatigue & Fracture of Engineering Materials & Structures
35
, no. 
6
(June
2012
):
538
555
, https://doi.org/10.1111/j.1460-2695.2011.01647.x
17.
Kotousov
A.
,
Berto
F.
,
Lazzarin
P.
, and
Pegorin
F.
, “
Three Dimensional Finite Element Mixed Fracture Mode under Anti-Plane Loading of a Crack
,”
Theoretical and Applied Fracture Mechanics
62
(December
2012
):
26
33
, https://doi.org/10.1016/j.tafmec.2013.01.003
18.
Kotousov
A.
,
Lazzarin
P.
,
Berto
F.
, and
Pook
L. P.
, “
Three-Dimensional Stress States at Crack Tip Induced by Shear and Anti-Plane Loading
,”
Engineering Fracture Mechanics
108
(August
2013
):
65
74
, https://doi.org/10.1016/j.engfracmech.2013.04.010
19.
Carpinteri
A.
,
Corrado
M.
,
Gong
B.
, and
Perdonò
P.
, “
Experimental Evidence and Numerical Simulation of Size Effects on the Ductile Fracture of Metallic Materials
,”
International Journal of Fracture
211
, nos. 
1–2
(March
2018
):
43
59
, https://doi.org/10.1007/s10704-018-0275-x
20.
Permanoon
A.
and
Akhaveissy
A. H.
, “
Effects of Meso-scale Modeling on Concrete Fracture Parameters Calculation
,”
Periodica Polytechnica Civil Engineering
63
, no. 
3
(
2019
):
782
794
, https://doi.org/10.3311/PPci.13874
21.
Di Cocco
V.
,
Iacoviello
F.
,
Rossi
A.
, and
Cavallini
M.
, “
Stress Triaxiality Influence on Damaging Micromechanisms in a Pearlitic Ductile Cast Iron
,”
Frattura ed Integrità Strutturale
8
, no. 
30
(
2014
):
462
468
, https://doi.org/10.3221/IGF-ESIS.30.56
22.
Coules
H. E.
,
Horne
G. C. M.
,
Venkata
K. A.
, and
Pirling
T.
, “
The Effects of Residual Stress on Elastic-Plastic Fracture Propagation and Stability
,”
Materials & Design
143
(April
2018
):
131
140
, https://doi.org/10.1016/j.matdes.2018.01.064
23.
Hurlston
R. G.
,
Sharples
J. K.
, and
Sherry
A. H.
, “
Understanding and Accounting for the Effects of Residual Stresses on Cleavage Fracture Toughness Measurements in the Transition Temperature Regime
,”
International Journal of Pressure Vessels and Piping
128
(April
2015
):
69
83
, https://doi.org/10.1016/j.ijpvp.2015.02.001
24.
Mukhtar
F.
,
Qayyum
F.
,
Elahi
H.
, and
Shah
M.
, “
Studying the Effect of Thermal Fatigue on Multiple Cracks Propagating in an SS316L Thin Flange on a Shaft Specimen Using a Multi-Physics Numerical Simulation Model
,”
Strojniski Vestnik—Journal of Mechanical Engineering
65
, no. 
10
(
2019
):
565
573
, https://doi.org/10.5545/sv-jme.2019.6073
25.
Elahi
H.
, “
Effect of Natural Aging and Fatigue Crack Propagation Rate on Welded and Non-Welded Aluminum Alloy (AA2219-T87)
,”
Advances in Science and Technology Research Journal
13
, no. 
3
(September
2019
):
129
143
, https://doi.org/10.12913/22998624/110737
26.
Garcia-Manrique
J.
,
Camas-Peña
D.
,
Lopez-Martinez
J.
, and
Gonzalez-Herrera
A.
, “
Analysis of the Stress Intensity Factor along the Thickness: The Concept of Pivot Node on Straight Crack Fronts
,”
Fatigue & Fracture of Engineering Materials & Structures
41
, no. 
4
(April
2018
):
869
880
, https://doi.org/10.1111/ffe.12734
27.
Garcia-Manrique
J.
,
Camas
D.
,
Lopez-Crespo
P.
, and
Gonzalez-Herrera
A.
, “
Stress Intensity Factor Analysis of Through Thickness Effects
,”
International Journal of Fatigue
46
(January
2013
):
58
66
, https://doi.org/10.1016/j.ijfatigue.2011.12.012
28.
Stewart
C. M.
,
Oputa
C. W.
, and
Garcia
E.
, “
Effect of Specimen Thickness on the Fracture Resistance of Hot Mix Asphalt in the Disk-Shaped Compact Tension (DCT) Configuration
,”
Construction and Building Materials
160
(January
2018
):
487
496
, https://doi.org/10.1016/j.conbuildmat.2017.11.041
29.
Javani
H.
,
Peerlings
R. H. J.
, and
Geers
M. G. D.
, “
Three-Dimensional Finite Element Modeling of Ductile Crack Initiation and Propagation
,”
Advanced Modeling and Simulation in Engineering Sciences
3
, no. 
1
(June
2016
): 19, https://doi.org/10.1186/s40323-016-0071-y
30.
Simha
N. K.
,
Fischer
F. D.
,
Shan
G. X.
,
Chen
C. R.
, and
Kolednik
O.
, “
J-Integral and Crack Driving Force in Elastic–Plastic Materials
,”
Journal of the Mechanics and Physics of Solids
56
, no. 
9
(September
2008
):
2876
2895
, https://doi.org/10.1016/j.jmps.2008.04.003
31.
Chen
C. R.
,
Kolednik
O.
,
Scheider
I.
,
Siegmund
T.
,
Tatschl
A.
, and
Fischer
F. D.
, “
On the Determination of the Cohesive Zone Parameters for the Modeling of Micro-Ductile Crack Growth in Thick Specimens
,”
International Journal of Fracture
120
, no. 
3
(April
2003
):
517
536
, https://doi.org/10.1023/A:1025426121928
32.
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials
, ASTM E399-20 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2020
), https://doi.org/10.1520/E0399-20
33.
Shih
C. F.
,
Moran
B.
, and
Nakamura
T.
, “
Energy Release Rate along a Three-Dimensional Crack Front in a Thermally Stressed Body
,”
International Journal of Fracture
30
, no. 
2
(February
1986
):
79
102
, https://doi.org/10.1007/BF00034019
34.
Stavroulakis
G. E.
,
Panagiotopoulos
P. D.
, and
Al-Fahed
A. M.
, “
On the Rigid Body Displacements and Rotations in Unilateral Contact Problems and Applications
,”
Computers & Structures
40
, no. 
3
(
1991
):
599
614
, https://doi.org/10.1016/0045-7949(91)90229-F
This content is only available via PDF.
You do not currently have access to this content.