Abstract

The use of smart cementitious materials is becoming increasingly critical for the enhanced serviceability of structures. The addition of carbon fibers, carbon nanotubes, and various nano-powders such as nano-silica, carbon black, and graphite giving cementitious materials electrical properties that can be used for self-sensing has been known for almost two decades. Many sensing principles and techniques using smart materials have been successfully developed and applied mostly in laboratory testing over last few decades. The strong capacity of Fiber-Reinforced Cementitious Composites for autogenous healing in addition to crack control (especially in the case of Strain-Hardening Cementitious Composites) has been reported by many researchers. Similarly, the applications of different mineral and bio-additive materials to achieve the self-healing of cracks have been noted with great interest. Design for serviceability based on the durability of the materials used in concrete structures is often neglected. With durability performance testing becoming more sophisticated, detailed service life design is being demanded in the most important infrastructure projects. The present review is focused on identifying field applications and highlighting the Performance-Driven Design Approach for tailoring material solutions for the problems likely to be faced by civil infrastructures in the future. A real-life case study is presented to illustrate the minimal cost implications of adopting the latest smart material for an eco-friendly, durable, reliable, and resilient infrastructure. Identifying critical challenges faced by the industry and developing solutions for the same is going to help bridge the current gaps between research and adoption.

References

1.
Borowy
I.
,
Defining Sustainable Development for Our Common Future: A History of the World Commission on Environment and Development (Brundtland Commission)
, 1st ed. (
Abingdon-on-Thames, UK
:
Routledge
,
2014
).
2.
World Economic Forum “Shaping the Future of Construction: Inspiring Innovators Redefine the Industry,”
2017
. http://web.archive.org/web/20190515033518/http://www3.weforum.org/docs/WEF_Shaping_the_Future_of_Construction_Inspiring_Innovators_redefine_the_industry_2017.pdf
3.
Dobbs
R.
,
Pohl
H.
,
Lin
D.-Y.
,
Mischke
J.
,
Garemo
N.
,
Hexter
J.
,
Matzinger
S.
,
Palter
R.
, and
Nanavatty
R.
,
Infrastructure Productivity: How to Save $1 Trillion a Year
(
New York, NY
:
McKinsey Global Institute
,
2013
).
4.
Ashby
M. F.
, “
Chapter 1 – Introduction: Material Dependence
,” in
Materials and Environment
, 2nd ed. (
Oxford, UK
:
Butterworth-Heinemann
,
2013
),
1
14
. https://doi.org/10.1016/B978-0-12-385971-6.00001-4
5.
Mehta
P. K.
and
Monteiro
P. J. M.
,
Concrete: Microstructure, Properties, and Materials
, 4th ed. (
New York
:
McGraw-Hill Education
,
2014
).
6.
Han
B.
,
Zhang
L.
, and
Ou
J.
,
Smart and Multifunctional Concrete toward Sustainable Infrastructures
, 1st ed. (
New York
:
Springer
,
2017
). https://doi.org/10.1007/978-981-10-4349-9
7.
American Society of Civil Engineers “
Infrastructure Report Card
,” American Society of Civil Engineers,
2017
. https://web.archive.org/web/20190704031401/https://www.infrastructurereportcard.org/
8.
Li
V. C.
and
Herbert
E.
, “
Robust Self-Healing Concrete for Sustainable Infrastructure
,”
Journal of Advanced Concrete Technology
10
, no. 
6
(June
2012
):
207
218
. https://doi.org/10.3151/jact.10.207
9.
Wintergreen Research “
Internet of Things (IoT) Market Shares, Strategies, and Forecasts 2017 to 2023
,” Wintergreen Research,
2017
. https://web.archive.org/web/20181027163111/https://www.reportsnreports.com/reports/944711-internet-of-things-iot-market-shares-strategies-and-forecasts-worldwide-2017-to-2023.html
10.
Xu
Y.
and
He
J.
,
Smart Civil Structures
, 1st ed. (
Boca Raton, FL
:
CRC Press
,
2017
).
11.
Hong Kong Planning Department “
Hong Kong 2030+: Towards a Planning Vision and Strategy Transcending 2030
,” Hong Kong Planning Department,
2016
. https://web.archive.org/web/20181025005919/https://www.hk2030plus.hk/​
12.
Rogers
C. A.
, “
Intelligent Materials
,”
Scientific American
273
, no. 
3
(September
1995
):
154
161
.
13.
Mihashi
H.
and
Nishiwaki
T.
, “
Development of Engineered Self-Healing and Self-Repairing Concrete-State-of-the-Art Report
,”
Journal of Advanced Concrete Technology
10
, no. 
5
(June
2012
):
170
184
. https://doi.org/10.3151/jact.10.170
14.
Sun
M.
,
Staszewski
W. J.
, and
Swamy
R. N.
, “
Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures
,”
Advances in Civil Engineering
2010
(May
2010
): 724962. https://doi.org/10.1155/2010/724962
15.
Li
V. C.
, “
Tailoring ECC for Special Attributes: A Review
,”
International Journal Concrete Structures and Materials
6
, no. 
3
(September
2012
):
135
144
. https://doi.org/10.1007/s40069-012-0018-8
16.
Li
V. C.
, “
Integrated Structures and Materials Design
,”
Materials and Structures
40
, no. 
4
(May
2007
):
387
396
. https://doi.org/10.1617/s11527-006-9146-4
17.
Li
V. C.
, “
Re-Engineering Concrete for Resilient and Sustainable Infrastructure
,” in
Institution of Civil Engineers Hong Kong Association Annual Conference
(
Wanchai
, Hong Kong
:
Institution of Civil Engineers Hong Kong Association
,
2015
),
1
16
.
18.
Peng
T.
,
Lemay
L.
, and
Hansen
J.
, “
Resilience is the New Sustainability
,”
Concrete in Focus
(January/February
2012
):
10
29
.
19.
Beletich
A. S.
,
Design Handbook for Reinforced Concrete Elements
, 2nd ed. (
Sydney, Australia
:
UNSW Press
,
2003
).
20.
Threlfall
A. J.
,
Designed and Detailed: Eurocode 2
(
Camberly, UK
:
Concrete Society
,
2009
).
21.
Hong Kong Building Department
Code of Practice for Structural Use of Concrete
(
Hong Kong
:
The Government of the Hong Kong Special Administrative Region
,
2013
).
22.
Djerbi
A.
,
Bonnet
S.
,
Khelidj
A.
, and
Baroghel-Bouny
V.
, “
Influence of Traversing Crack on Chloride Diffusion into Concrete
,”
Cement and Concrete Research
38
, no. 
6
(June
2008
):
877
883
. https://doi.org/10.1016/j.cemconres.2007.10.007
23.
Wang
K.
,
Jansen
D. C.
,
Shah
S. P.
, and
Karr
A. F.
, “
Permeability Study of Cracked Concrete
,”
Cement and Concrete Research
27
, no. 
3
(March
1997
):
381
393
. https://doi.org/10.1016/S0008-8846(97)00031-8
24.
Lepech
M. D.
and
Li
V. C.
, “
Water Permeability of Engineered Cementitious Composites
,”
Cement and Concrete Composites
31
, no. 
10
(November
2009
):
744
753
. https://doi.org/10.1016/j.cemconcomp.2009.07.002
25.
Li
V. C.
,
Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure
, 1st ed. (
Berlin/Heidelberg
:
Springer
,
2019
). https://doi.org/10.1007/978-3-662-58438-5
26.
Li
V. C.
and
Leung
C. K. Y.
, “
Steady-State and Multiple Cracking of Short Random Fiber Composites
,”
Journal of Engineering Mechanics
118
, no. 
11
(November
1992
):
2246
2264
. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
27.
Li
V. C.
,
Wang
S.
, and
Wu
C.
, “
Tensile Strain-Hardening Behavior of Polyvinyl Alcohol Engineered Cementitious Composite (PVA-ECC)
,”
ACI Materials Journal
98
, no. 
6
(November
2001
):
483
492
.
28.
Yu
J.
,
Lu
C.
,
Chen
Y.
, and
Leung
C. K. Y.
, “
Experimental Determination of Crack-Bridging Constitutive Relations of Hybrid-Fiber Strain-Hardening Cementitious Composites Using Digital Image Processing
,”
Construction and Building Materials
173
(June
2018
):
359
367
. https://doi.org/10.1016/j.conbuildmat.2018.03.185
29.
Chen
Y.
,
Yu
J.
, and
Leung
C. K. Y.
, “
Use of High Strength Strain-Hardening Cementitious Composites for Flexural Repair of Concrete Structures with Significant Steel Corrosion
,”
Construction and Building Materials
167
(April
2018
):
325
337
. https://doi.org/10.1016/j.conbuildmat.2018.02.009
30.
Yu
J.
,
Li
H.
,
Leung
C. K. Y.
,
Lin
X.
,
Lam
J. Y. K.
,
Sham
I. M. L.
, and
Shih
K.
, “
Matrix Design for Waterproof Engineered Cementitious Composites (ECCs)
,”
Construction and Building Materials
139
(May
2017
):
438
446
. https://doi.org/10.1016/j.conbuildmat.2017.02.076
31.
Lin
X.
,
Yu
J.
,
Li
H.
,
Lam
J. Y. K.
,
Shih
K.
,
Sham
I. M. L.
, and
Leung
C. K. Y.
, “
Recycling Polyethylene Terephthalate Wastes as Short Fibers in Strain-Hardening Cementitious Composites (SHCC)
,”
Journal of Hazardous Materials
357
(September
2018
):
40
52
. https://doi.org/10.1016/j.jhazmat.2018.05.046
32.
Lu
C.
,
Yu
J.
, and
Leung
C. K. Y.
, “
Tensile Performance and Impact Resistance of Strain Hardening Cementitious Composites (SHCC) with Recycled Fibers
,”
Construction and Building Materials
171
(May
2018
):
566
576
. https://doi.org/10.1016/j.conbuildmat.2018.03.108
33.
Yu
J.
,
Yao
J.
,
Lin
X.
,
Li
H.
,
Lam
J. Y. K.
,
Leung
C. K. Y.
,
Sham
I. M. L.
, and
Shih
K.
, “
Tensile Performance of Sustainable Strain-Hardening Cementitious Composites with Hybrid PVA and Recycled PET Fibers
,”
Cement and Concrete Research
107
(May
2018
):
110
123
. https://doi.org/10.1016/j.cemconres.2018.02.013
34.
Yu
J.
,
Chen
Y.
, and
Leung
C. K. Y.
, “
Mechanical Performance of Strain-Hardening Cementitious Composites (SHCC) with Hybrid Polyvinyl Alcohol and Steel Fibers
,”
Composite Structures
226
(October
2019
): 111198. https://doi.org/10.1016/j.compstruct.2019.111198
35.
Huang
B.
,
Li
Q.
,
Xu
S.
, and
Zhou
B.
, “
Tensile Fatigue Behavior of Fiber-Reinforced Cementitious Material with High Ductility: Experimental Study and Novel P-S-N Model
,”
Construction and Building Materials
178
(July
2018
):
349
359
. https://doi.org/10.1016/j.conbuildmat.2018.05.166
36.
Nematollahi
B.
,
Qiu
J.
,
Yang
E.
, and
Sanjayan
J.
, “
Micromechanics Constitutive Modelling and Optimization of Strain Hardening Geopolymer Composite
,”
Ceramics International
43
(June
2017
):
5999
6007
. https://doi.org/10.1016/j.ceramint.2017.01.138
37.
Lu
C.
,
Li
V. C.
, and
Leung
C. K. Y.
, “
Flaw Characterization and Correlation with Cracking Strength in Engineered Cementitious Composites (ECC)
,”
Cement and Concrete Research
107
(May
2018
):
64
74
. https://doi.org/10.1016/j.cemconres.2018.02.024
38.
Li
V. C.
and
Yang
E.
, “
Self Healing in Concrete Materials
,” in
Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science
, ed.
van der Zwaag
S.
(
Dordrecht, the Netherlands
:
Springer Netherlands
,
2007
),
161
193
.
39.
Yang
Y.
,
Yang
E.
, and
Li
V. C.
, “
Autogenous Healing of Engineered Cementitious Composites at Early Age
,”
Cement and Concrete Research
41
, no. 
2
(February
2011
):
176
183
. https://doi.org/10.1016/j.cemconres.2010.11.002
40.
Hou
L.
,
Wang
J.
,
Huang
T.
,
Shen
C.
,
Aslani
F.
, and
Chen
D.
, “
Flexural Behaviour of Corroded Reinforced Concrete Beams Repaired with Ultra-High Toughness Cementitious Composite
,”
Construction and Building Materials
211
(June
2019
):
1127
1137
. https://doi.org/10.1016/j.conbuildmat.2019.03.214
41.
van der Zwaag
S.
, ed.,
Self-Healing Materials: An Alternative Approach to 20 Centuries of Materials Science
(
Dordrecht, the Netherlands
:
Springer Netherlands
,
2007
). https://doi.org/10.1007/978-1-4020-6250-6
42.
RILEM
Self-Healing Phenomena in Cement-Based Materials, State-of-the-Art Report of RILEM Technical Committee 221-SHC: Self-Healing Phenomena in Cement-Based Materials
(
New York, NY
:
Springer
,
2013
). https://doi.org/10.1007/978-94-007-6624-2
43.
Dry
C.
, “
Passive Smart Materials for Sensing and Actuation
,”
Journal of Intelligent Material Systems and Structures
4
, no. 
3
(July
1993
):
420
425
. https://doi.org/10.1177/1045389X9300400318
44.
Li
V. C.
,
Lim
Y. M.
, and
Chan
Y.-W.
, “
Feasibility Study of a Passive Smart Self-Healing Cementitious Composite
,”
Composites Part B: Engineering
29
, no. 
6
(November
1998
):
819
827
. https://doi.org/10.1016/S1359-8368(98)00034-1
45.
Sahmaran
M.
,
Yildirim
G.
, and
Erdem
T. K.
, “
Self-Healing Capability of Cementitious Composites Incorporating Different Supplementary Cementitious Materials
,”
Cement and Concrete Composites
35
, no. 
1
(January
2013
):
89
101
. https://doi.org/10.1016/j.cemconcomp.2012.08.013
46.
Ahn
T.
and
Kishi
T.
, “
Crack Self-Healing Behavior of Cementitious Composites Incorporating Various Mineral Admixtures
,”
Journal of Advanced Concrete Technology
8
, no. 
2
(June
2010
):
171
186
. https://doi.org/10.3151/jact.8.171
47.
Jiang
Z.
,
Li
J.
, and
Li
W.
, “
Preparation and Characterization of Autolytic Mineral Microsphere for Self-Healing Cementitious Materials
,”
Cement and Concrete Composites
103
(April
2019
):
112
120
. https://doi.org/10.1016/j.cemconcomp.2019.04.004
48.
Gollapudi
U. K.
,
Knutson
C. L.
,
Bang
S. S.
, and
Islam
M. R.
, “
A New Method for Controlling Leaching through Permeable Channels
,”
Chemosphere
30
, no. 
4
(February
1995
):
695
705
. https://doi.org/10.1016/0045-6535(94)00435-W
49.
Sangadji
S.
, “
Porous Network Concrete: A Bio-Inspired Building Component to Make Concrete Structures Self-Healing
” (PhD diss.,
Delft University of Technology
,
2015
).
50.
Tittelboom
K. V.
,
Belie
N. D.
,
Loo
D. V.
, and
Jacobs
P.
, “
Self-Healing Efficiency of Cementitious Materials Containing Tubular Capsules Filled with Healing Agent
,”
Cement and Concrete Composites
33
, no. 
4
(April
2011
):
497
505
. https://doi.org/10.1016/j.cemconcomp.2011.01.004
51.
Tittelboom
K. V.
and
Belie
N. D.
, “
Self-Healing in Cementitious Materials—A Review
,”
Materials
6
, no. 
6
(May
2013
):
2182
2217
. https://doi.org/10.3390/ma6062182
52.
Tittelboom
K. V.
,
Belie
N. D.
,
Muynck
W. D.
, and
Verstraete
W.
, “
Use of Bacteria to Repair Cracks in Concrete
,”
Cement and Concrete Research
40
, no. 
1
(January
2010
):
157
166
. https://doi.org/10.1016/j.cemconres.2009.08.025
53.
Jongvivatsakul
P.
,
Janprasit
K.
,
Nuaklong
P.
,
Pungrasmi
W.
, and
Likitlersuang
S.
, “
Investigation of the Crack Healing Performance in Mortar Using Microbially Induced Calcium Carbonate Precipitation (MICP) Method
,”
Construction and Building Materials
212
(July
2019
):
737
744
. https://doi.org/10.1016/j.conbuildmat.2019.04.035
54.
Ali
M. A. E. M.
and
Nehdi
M. L.
, “
Innovative Crack-Healing Hybrid Fiber Reinforced Engineered Cementitious Composite
,”
Construction and Building Materials
150
(September
2017
):
689
702
. https://doi.org/10.1016/j.conbuildmat.2017.06.023
55.
Herbert
E.
, “
Development and Application of Self-Healing Engineered Cementitious Composites (ECC) for Durable and Sustainable Infrastructure
” (PhD diss.,
University of Michigan
,
2016
).
56.
Suleiman
A. R.
,
Nelson
A. J.
, and
Nehdi
M. L.
, “
Visualization and Quantification of Crack Self-Healing in Cement-Based Materials Incorporating Different Minerals
,”
Cement and Concrete Composites
103
(October
2019
):
49
58
. https://doi.org/10.1016/j.cemconcomp.2019.04.026
57.
Wang
M. L.
,
Lynch
J. P.
, and
Sohn
H.
, eds.,
Sensor Technologies for Civil Infrastructures, Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment
, 1st ed. (
Sawston
, UK
:
Woodhead Publishing
,
2014
).
58.
Das
A. K.
,
Lai
T. T.
,
Chan
C. W.
, and
Leung
C. K. Y.
, “
A New Non-Linear Framework for Localization of Acoustic Sources
,”
Structural Health Monitoring
18
, no. 
2
(March
2018
):
590
601
. https://doi.org/10.1177/1475921718762154
59.
Das
A. K.
and
Leung
C. K. Y.
, “
A New Power-Based Method to Determine the First Arrival Information of an Acoustic Emission Wave
,”
Structural Health Monitoring
(December
2018
): 1475921718815058. https://doi.org/10.1177/1475921718815058
60.
Das
A. K.
,
Suthar
D.
, and
Leung
C. K. Y.
, “
Machine Learning Based Crack Mode Classification from Unlabeled Acoustic Emission Waveform Features
,”
Cement and Concrete Research
121
(July
2019
):
42
57
. https://doi.org/10.1016/j.cemconres.2019.03.001
61.
Leung
C. K. Y.
,
Wan
K. T.
, and
Chen
L.
, “
A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures
,”
Sensors
8
, no. 
3
(March
2008
):
1960
1976
. https://doi.org/10.3390/s8031960
62.
Das
A. K.
, “
Experimental Study of Cracking Process in Steel Fiber Reinforced Concrete Beam Members
” (M. Phil. thesis,
Hong Kong University of Science and Technology
,
2017
).
63.
Annamdas
V. G. M.
,
Bhalla
S.
, and
Soh
C. K.
, “
Applications of Structural Health Monitoring Technology in Asia
,”
Structural Health Monitoring
16
, no. 
3
(June
2017
):
324
346
. https://doi.org/10.1177/1475921716653278
64.
Das
A. K.
and
Leung
C. K. Y.
, “
Power Spectral Entropy (PSE) as a Qualitative Damage Indicator
” (paper presentation, Ninth European Workshop on Structural Health Monitoring,
Manchester, UK
, July 10–13,
2018
).
65.
Leung
C.
,
Wan
K. T.
,
Inaudi
D.
,
Bao
X.
,
Habel
W.
,
Zhou
Z.
,
Ou
J.
,
Ghandehari
M.
,
Wu
H. C.
, and
Imai
M.
, “
Review: Optical Fiber Sensors for Civil Engineering Applications
,”
Materials and Structures
48
, no. 
4
(November
2015
):
871
906
. https://doi.org/10.1617/s11527-013-0201-7
66.
Azarsa
P.
and
Gupta
R.
, “
Electrical Resistivity of Concrete for Durability Evaluation: A Review
,”
Advances in Materials Science and Engineering
2017
(May
2017
): 8453095. https://doi.org/10.1155/2017/8453095
67.
Gupta
S.
,
Gonzalez
J. G.
, and
Loh
K. J.
, “
Self-Sensing Concrete Enabled by Nano-Engineered Cement-Aggregate Interfaces
,”
Structural Health Monitoring
16
, no. 
3
(April
2016
):
309
323
. https://doi.org/10.1177/1475921716643867
68.
Han
B.
,
Zhang
K.
,
Burnham
T.
,
Kwon
E.
, and
Yu
X.
, “
Integration and Road Tests of a Self-Sensing CNT Concrete Pavement System for Traffic Detection
,”
Smart Materials and Structures
22
, no. 
1
(December
2012
): 015020. https://doi.org/10.1088/0964-1726/22/1/015020
69.
Shi
L.
,
Lu
Y.
, and
Bai
Y.
, “
Mechanical and Electrical Characterisation of Steel Fiber and Carbon Black Engineered Cementitious Composites
,”
Procedia Engineering
188
(May
2017
):
325
332
. https://doi.org/10.1016/j.proeng.2017.04.491
70.
Chung
D. D. L.
. Composite material strain/stress sensor. U.S. Patent US5817944 A, filed March 18, 1997 and issued October 6,
1998
.
71.
Behzad
M.
,
Ghadami
A.
,
Maghsoodi
A.
, and
Michael
J.
Hale, “
Vibration Based Algorithm for Crack Detection in Cantilever Beam Containing Two Different Types of Cracks
,”
Journal of Sound and Vibration
332
, no. 
24
(November
2013
):
6312
6320
. https://doi.org/10.1016/j.jsv.2013.07.003
72.
Carpinteri
A.
and
Lacidogna
G.
, “
Damage Monitoring of an Historical Masonry Building by the Acoustic Emission Technique
,”
Materials and Structures
39
, no. 
2
(March
2007
):
161
167
. https://doi.org/10.1617/s11527-005-9043-2
73.
Dhital
D.
and
Lee
J. R.
, “
A Fully Non-Contact Ultrasonic Propagation Imaging System for Closed Surface Crack Evaluation
,”
Experimental Mechanics
52
, no. 
8
(October
2012
):
1111
1122
. https://doi.org/10.1007/s11340-011-9567-z
74.
Hallaji
M.
and
Pour-Ghaz
M.
, “
A New Sensing Skin for Qualitative Damage Detection in Concrete Elements: Rapid Difference Imaging With Electrical Resistance Tomography
,”
NDT & E International
68
(December
2014
):
13
21
. https://doi.org/10.1016/j.ndteint.2014.07.006
75.
Salowitz
N.
,
Guo
Z.
,
Li
Y.
,
Kim
K.
,
Lanzara
G.
, and
Chang
F.
, “
Bio-Inspired Stretchable Network-Based Intelligent Composites
,”
Journal of Composite Materials
47
, no. 
1
(May
2013
):
97
105
. https://doi.org/10.1177/0021998312442900
76.
Fugate
M. L.
,
Sohn
H.
, and
Farrar
C. R.
, “
Vibration-Based Damage Detection Using Statistical Process Control
,”
Mechanical Systems and Signal Processing
15
, no. 
4
(July
2001
):
707
721
. https://doi.org/10.1006/mssp.2000.1323
77.
Mohan
A.
and
Poobal
S.
, “
Crack Detection Using Image Processing: A Critical Review and Analysis
,”
Alexandria Engineering Journal
57
, no. 
2
(June
2018
):
787
798
. https://doi.org/10.1016/j.aej.2017.01.020
78.
Li
G.
,
He
S.
,
Ju
Y.
, and
Du
K.
, “
Long-Distance Precision Inspection Method for Bridge Cracks with Image Processing
,”
Automation in Construction
41
(May
2014
):
83
95
. https://doi.org/10.1016/j.autcon.2013.10.021
79.
Lu
C.
,
Yu
J.
, and
Leung
C. K. Y.
, “
An Improved Image Processing Method for Assessing Multiple Cracking Development in Strain Hardening Cementitious Composites (SHCC)
,”
Cement and Concrete Composites
74
(November
2016
):
191
200
. https://doi.org/10.1016/j.cemconcomp.2016.10.005
80.
Leung
C. K. Y.
,
Elvin
N.
,
Olson
N.
,
Morse
T. F.
, and
He
Y.
, “
A Novel Distributed Optical Crack Sensor for Concrete Structures
,”
Engineering Fracture Mechanics
65
, nos. 
2–3
(January
2000
):
133
148
. https://doi.org/10.1016/S0013-7944(99)00112-5
81.
Glisic
B.
and
Inaudi
D.
, “
Development of Method for In-Service Crack Detection Based on Distributed Fiber Optic Sensors
,”
Structural Health Monitoring
11
, no. 
2
(August
2011
):
161
171
. https://doi.org/10.1177/1475921711414233
82.
Yao
Y.
and
Glisic
B.
, “
Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
,”
Sensors
15
, no. 
4
(April
2015
):
8088
8108
. https://doi.org/10.3390/s150408088
83.
Hou
T.
and
Lynch
J. P.
, “
Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures
,”
Journal of Intelligent Materials Systems and Structures
20
, no. 
11
(July
2009
):
1363
1379
. https://doi.org/10.1177/1045389X08096052
84.
Ohtsu
M.
, ed.,
Innovative AE and NDT Techniques for On-Site Measurement of Concrete and Masonry Structures: State-of-the-Art Report of the RILEM Technical Committee 239-MCM
(
New York, NY
:
Springer
,
2016
).
85.
Shiotani
T.
,
Hashimoto
K.
,
Asaue
H.
,
Nishida
T.
,
Takamine
H.
,
Watabe
K.
, and
Fukuda
M.
, “
Lateral Damage Identification in RC Slabs by Several Tomographic Approaches with Rainy Induced Elastic Waves
,”
Strojniški vestnik
64
, no. 
11
(
2018
):
657
664
. https://doi.org/10.5545/sv-jme.2018.5398
86.
Grosse
C. U.
and
Ohtsu
M.
, eds.,
Acoustic Emission Testing: Basics For Research – Applications in Civil Engineering
(
Berlin
:
Springer
,
2008
). https://doi.org/10.1007/978-3-540-69972-9
87.
Ohtsu
M.
, “
Acoustic Emission Characteristics in Concrete and Diagnostic Applications
,”
Journal of Acoustic Emission
6
, no. 
2
(January
1987
):
99
108
.
88.
Tsangouri
E.
,
Karaiskos
G.
,
Deraemaeker
A.
,
Hemelrijck
D. V.
, and
Aggelis
D.
, “
Assessment of Acoustic Emission Localization Accuracy on Damaged and Healed Concrete
,”
Construction and Building Materials
129
(December
2016
):
163
171
. https://doi.org/10.1016/j.conbuildmat.2016.10.104
89.
Ge
M.
, “
Analysis of Source Location Algorithms. Part I: Overview and Non-iterative Methods
,”
Journal of Acoustic Emission
21
(
2003
):
14
28
.
90.
Ge
M.
, “
Analysis of Source Location Algorithms. Part II: Iterative Methods
,”
Journal of Acoustic Emission
21
(
2003
):
29
51
.
91.
Ge
M.
, “
Efficient Mine Microseismic Monitoring
,”
International Journal of Coal Geology
64
, nos. 
1–2
(October
2005
):
44
56
. https://doi.org/10.1016/j.coal.2005.03.004
92.
Li
N.
,
Wang
E.
,
Ge
M.
, and
Sun
Z.
, “
A Nonlinear Microseismic Source Location Method Based on Simplex Method and Its Residual Analysis
,”
Arabian Journal of Geosciences
7
, no. 
11
(November
2014
):
4477
4486
. https://doi.org/10.1007/s12517-013-1121-0
93.
Bai
F.
,
Gagar
D.
,
Foote
P.
, and
Zhao
Y.
, “
Comparison of Alternatives to Amplitude Thresholding for Onset Detection of Acoustic Emission Signals
,”
Mechanical Systems and Signal Processing
84
(February
2017
):
717
730
. https://doi.org/10.1016/j.ymssp.2016.09.004
94.
Sedlak
P.
,
Hirose
Y.
, and
Enoki
M.
, “
Acoustic Emission Localization in Thin Multi-Layer Plates Using First-Arrival Determination
,”
Mechanical Systems and Signal Processing
36
, no. 
2
(April
2013
):
636
649
. https://doi.org/10.1016/j.ymssp.2012.11.008
95.
Das
A. K.
and
Leung
C. K. Y.
, “
A New Methodology for Detecting the First Arrival Time of an Acoustic Wave
,” in
Eighth International Conference on Acoustic Emission
(
Tokyo, Japan
:
Japanese Society for Non-destructive Inspection
,
2016
),
425
430
.
96.
Schubert
F.
, “
Basic Principles of Acoustic Emission Tomography
,”
Journal of Acoustic Emission
22
(
2004
):
147
158
.
97.
fib Task Group 5.6
Model Code for Service Life Design
(
Lausanne, Switzerland
:
fédération internationale du béton
,
2006
).
98.
van Zijl
G. P. A. G.
and
Slowik
V.
,
A Framework for Durability Design with Strain-Hardening Cement-Based Composites (SHCC): State-of-the-Art Report of the RILEM Technical Committee 240-FDS
(Dordrecht, the Netherlands: Springer Netherlands,
2017
). https://doi.org/10.1007/978-94-024-1013-6
99.
van Brugel
K.
, “
Is There a Market for Self-Healing Cement-Based Materials?
” in
First International Conference on Self-Healing Materials
(
New York, NY
:
Springer
,
2007
),
1
9
.
100.
Lepech
M. D.
and
Li
V. C.
, “
Design and Field Demonstration of ECC Link Slabs for Jointless Bridge Decks
” (paper presentation, Third International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, Canada, August 22–24,
2005
).
101.
Li
V. C.
,
Fischer
G.
,
Kim
Y.
,
Lepech
M.
,
Qian
S.
,
Weimann
M.
, and
Wang
S.
,
Durable Link Slabs for Jointless Bridge Decks Based on Strain-Hardening Cementitious Composites, Research Report RC-1438
(
Lansing, MI
:
Michigan Department of Transportation
,
2003
).
102.
Keoleian
G. A.
,
Kendall
A.
,
Dettling
J. E.
,
Smith
V. M.
,
Chandler
R. F.
,
Lepech
M. D.
, and
Li
V. C.
, “
Life Cycle Modeling of Concrete Bridge Design: Comparison of Engineered Cementitious Composite Link Slabs and Conventional Steel Expansion Joints
,”
Journal of Infrastructure Systems
11
, no. 
1
(March
2005
):
51
60
. https://doi.org/10.1061/(ASCE)1076-0342(2005)11:1(51)
103.
Yu
J.
and
Leung
C. K. Y.
, “
Strength Improvement of Strain-Hardening Cementitious Composites with Ultrahigh-Volume Fly Ash
,”
Journal of Materials in Civil Engineering
29
, no. 
9
(September
2017
): 05017003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001987
104.
Han
B.
,
Yu
X.
, and
Kwon
E.
, “
A Self-Sensing Carbon Nanotube/Cement Composite for Traffic Monitoring
,”
Nanotechnology
20
, no. 
44
(October
2009
): 445501. https://doi.org/10.1088/0957-4484/20/44/445501
105.
Liu
Q.
,
Yu
W.
,
Schlangen
E.
, and
van Bochove
G.
, “
Unravelling Porous Asphalt Concrete with Induction Heating
,”
Construction and Building Materials
71
(November
2014
):
152
157
. https://doi.org/10.1016/j.conbuildmat.2014.08.048
106.
NL Agency
Self Healing Materials: Concept and Applications, Publication Number 3ISHM1101
, 2nd ed. (
The Hague, the Netherlands
:
Ministry of Economic Affairs, Agriculture and Innovation
,
2011
).
107.
Rider Levett Bucknall
Hong Kong Report: Quarterly Construction Cost Update
(
Birmingham, UK
:
Rider Levett Bucknall
,
2018
).
108.
Humphrey
S.
,
Amato
A.
, and
Frewer
R.
, “
Whole Life Comparison of High Rise Residential Blocks in Hong Kong
,” Hong Kong Housing Authority,
2004
. https://web.archive.org/web/20190704130011/https://www.housingauthority.gov.hk/hdw/ihc/pdf/wlchrrr.pdf
109.
Yu
J.
,
Lu
C.
,
Leung
C. K. Y.
, and
Li
G.
, “
Mechanical Properties of Green Structural Concrete with Ultrahigh-Volume Fly Ash
,”
Construction and Building Materials
147
(August
2017
):
510
518
. https://doi.org/10.1016/j.conbuildmat.2017.04.188
110.
Tay
Y. W. D.
,
Panda
B.
,
Paul
S. C.
,
Mohamed
N. A. N.
,
Tan
M. J.
, and
Leong
K. F.
, “
3D Printing Trends in Building and Construction Industry: A Review
,”
Virtual and Physical Prototyping
12
, no. 
3
(May
2017
):
261
276
. https://doi.org/10.1080/17452759.2017.1326724
111.
Romeo
J.
, “
Building the Future: How 3D Printing Will Revolutionize the Construction Industry
,”
Plastics Engineering
74
, no. 
3
(March
2018
):
16
21
. https://doi.org/10.1002/j.1941-9635.2018.tb01853.x
112.
Yao
Y.
and
Glisic
B.
, “
Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
,”
Sensors
15
, no. 
4
(April
2015
):
8088
8108
. https://doi.org/10.3390/s150408088
113.
Leung
C. K. Y.
, “
Fiber Optic Sensors in Concrete: The Future?
NDT & E International
34
, no. 
2
(March
2001
):
85
94
. https://doi.org/10.1016/S0963-8695(00)00033-5
114.
Leung
C. K. Y.
,
Elvin
N.
,
Olson
N.
,
Morse
T. F.
, and
He
Y.
, “
A Novel Distributed Optical Crack Sensor for Concrete Structures
,”
Engineering Fracture Mechanics
65
, nos. 
2–3
(January
2000
):
133
148
. https://doi.org/10.1016/S0013-7944(99)00112-5
115.
Lu
C.
,
Lu
Z.
,
Li
Z.
, and
Leung
C. K. Y.
, “
Effect of Graphene Oxide on the Mechanical Behavior of Strain Hardening Cementitious Composites
,”
Construction and Building Materials
120
(September
2016
):
457
464
. https://doi.org/10.1016/j.conbuildmat.2016.05.122
116.
Yu
J.
, “
Multi-scale Study on Strain-Hardening Cementitious Composites with Hybrid Fibers
” (PhD diss.,
Hong Kong University of Science and Technology
,
2017
).
117.
Lepech
M. D.
and
Li
V. C.
, “
Long Term Durability Performance of Engineered Cementitious Composites
,”
Restoration of Buildings and Monuments
12
, no. 
2
(April
2006
):
119
132
. https://doi.org/10.1515/rbm-2006-6038
118.
Kunieda
M.
and
Rokugo
K.
, “
Recent Progress on HPFRCC in Japan: Required Performance and Applications
,”
Journal of Advanced Concrete Technology
4
, no. 
1
(February
2006
):
19
33
. https://doi.org/10.3151/jact.4.19
119.
Rokugo
K.
,
Kunieda
M.
, and
Lim
S. C.
, “
Patching Repair with ECC on Cracked Concrete Surface
,” in
Third International Conference on Construction Materials: Performance, Innovations and Structural Implications
(
Vancouver, Canada
:
University of British Columbia
,
2005
).
120.
Kanda
T.
,
Nagai
S.
,
Maruta
M.
, and
Yamamoto
Y.
, “
New High-Rise R/C Structure Using ECC Coupling Beams
,” in
Second International RILEM Conference on Strain Hardening Composites
(
Paris
:
RILEM
,
2011
),
289
296
.
121.
Mechtcherine
V.
and
Altmann
F.
, “
Durability of Structural Elements and Structures
”, in
A Framework for Durability Design with Strain-Hardening Cement-Based Composites (SHCC), State-of-the-Art Report of the RILEM Technical Committee 240-FDS
,
van Zijl
G. P. A. G.
and
Slowik
V.
, eds. (
Dordrecht, the Netherlands
:
Springer Netherlands
,
2017
):
89
111
. https://doi.org/10.1007/978-94-024-1013-6
122.
Rokugo
K.
, “
Applications of SHCC in Japan – Tools and Tips for Promoting Its Use
,” in
International Conference on Strain-Hardening Cement-Based Composites
(
Cham, Switzerland
:
Springer Nature
,
2017
),
671
680
.
123.
Fu
X.
,
Lu
W.
, and
Chung
D. D. L.
, “
Ozone Treatment of Carbon Fiber for Reinforcing Cement
,”
Carbon
36
, no. 
9
(September
1998
):
1337
1345
. https://doi.org/10.1016/S0008-6223(98)00115-8
124.
Gao
D.
,
Sturm
M.
, and
Mo
Y. L.
, “
Electrical Resistance of Carbon-Nanofiber Concrete
,”
Smart Materials and Structures
20
, no. 
4
(April
2011
): 049501. https://doi.org/10.1088/0964-1726/20/4/049501
125.
Azhari
F.
and
Banthia
N.
, “
Cement-Based Sensors with Carbon Fibers and Carbon Nanotubes for Piezoresistive Sensing
,”
Cement and Concrete Composites
34
, no. 
7
(August
2012
):
866
873
. https://doi.org/10.1016/j.cemconcomp.2012.04.007
126.
Galao
O.
,
Baeza
F. J.
,
Zornoza
E.
, and
Garcés
P.
, “
Strain and Damage Sensing Properties on Multifunctional Cement Composites with CNF Admixture
,”
Cement and Concrete Composites
46
(February
2014
):
90
98
. https://doi.org/10.1016/j.cemconcomp.2013.11.009
127.
Konsta-Gdoutos
M. S.
and
Aza
C. A.
, “
Self Sensing Carbon Nanotube (CNT) and Nanofiber (CNF) Cementitious Composites for Real Time Damage Assessment in Smart Structures
,”
Cement and Concrete Composites
53
(October
2014
):
162
169
. https://doi.org/10.1016/j.cemconcomp.2014.07.003
128.
Wen
S.
and
Chung
D. D. L.
, “
Partial Replacement of Carbon Fiber by Carbon Black in Multifunctional Cement–Matrix Composites
,”
Carbon
45
, no. 
3
(March
2007
):
505
513
. https://doi.org/10.1016/j.carbon.2006.10.024
129.
Materazzi
A. L.
,
Ubertini
F.
, and
D’Alessandro
A.
, “
Carbon Nanotube Cement-Based Transducers for Dynamic Sensing of Strain
,”
Cement and Concrete Composites
37
(March
2013
):
2
11
. https://doi.org/10.1016/j.cemconcomp.2012.12.013
130.
Wen
S.
and
Chung
D. D. L.
, “
A Comparative Study of Steel and Carbon-Fibre Cement as Piezoresistive Strain Sensors
,”
Advances in Cement Research
15
, no. 
3
(July
2003
):
119
128
. https://doi.org/10.1680/adcr.2003.15.3.119
131.
Teomete
E.
and
Kocyigit
O. I.
, “
Tensile Strain Sensitivity of Steel Fiber Reinforced Cement Matrix Composites Tested by Split Tensile Test
,”
Construction and Building Materials
47
(October
2013
):
962
968
. https://doi.org/10.1016/j.conbuildmat.2013.05.095
132.
Li
H.
,
Xiao
H.
, and
Ou
J.
, “
A Study on Mechanical and Pressure-Sensitive Properties of Cement Mortar with Nanophase Materials
,”
Cement and Concrete Research
34
, no. 
3
(March
2004
):
435
438
. https://doi.org/10.1016/j.cemconres.2003.08.025
133.
Soh
C. K.
,
Tseng
K. K.-H.
,
Bhalla
S.
, and
Gupta
A.
, “
Performance of Smart Piezoceramic Patches in Health Monitoring of a RC Bridge
,”
Smart Materials and Structures
9
, no. 
4
(August
2000
):
533
542
. https://doi.org/10.1088/0964-1726/9/4/317
134.
Song
G.
,
Gu
H.
,
Mo
Y. L.
,
Hsu
T. T. C.
, and
Dhonde
H.
, “
Concrete Structural Health Monitoring Using Embedded Piezoceramic Transducers
,”
Smart Materials and Structures
16
, no. 
4
(August
2007
):
959
968
. https://doi.org/10.1088/0964-1726/16/4/003
135.
Yang
Y.
,
Lim
Y. Y.
, and
Soh
C. K.
, “
Practical Issues Related to the Application of the Electromechanical Impedance Technique in the Structural Health Monitoring of Civil Structures: I. Experiment
,”
Smart Materials and Structures
17
, no. 
3
(March
2008
): 035008. https://doi.org/10.1088/0964-1726/17/3/035008
136.
Nawy
E. G.
,
Concrete Construction Engineering Handbook
, 2nd ed. (
Boca Raton, FL
:
CRC Press
,
2008
).
137.
Kuang
K. S. C.
,
Quek
S. T.
,
Koh
C. G.
,
Cantwell
W. J.
, and
Scully
P. J.
, “
Plastic Optical Fibre Sensors for Structural Health Monitoring: A Review of Recent Progress
,”
Journal of Sensors
2009
(July
2009
): 312053. https://doi.org/10.1155/2009/312053
138.
Leung
C. K. Y.
,
Wan
K. T.
,
Inaudi
D.
,
Bao
X.
,
Habel
W.
,
Zhou
Z.
,
Ou
J.
,
Ghandehari
M.
,
Wu
H. C.
, and
Imai
M.
, “
Review: Optical Fiber Sensors for Civil Engineering Applications
,”
Materials and Structures
48
, no. 
4
(April
2015
):
871
906
. https://doi.org/10.1617/s11527-013-0201-7
139.
Song
G.
,
Mo
Y. L.
,
Otero
K.
, and
Gu
H.
, “
Health Monitoring and Rehabilitation of a Concrete Structure Using Intelligent Materials
,”
Smart Materials and Structures
15
, no. 
2
(January
2006
):
309
314
. https://doi.org/10.1088/0964-1726/15/2/010
140.
Carpinteri
A.
,
Lacidogna
G.
, and
Pugno
N.
, “
Structural Damage Diagnosis and Life-Time Assessment by Acoustic Emission Monitoring
,”
Engineering Fracture Mechanics
74
, nos. 
1–2
(January
2007
):
273
289
. https://doi.org/10.1016/j.engfracmech.2006.01.036
141.
Leinov
E.
,
Lowe
M. J. S.
, and
Cawley
P.
, “
Investigation of Guided Wave Propagation in Pipes Fully and Partially Embedded in Concrete
,”
Journal of the Acoustical Society of America
140
, no. 
6
(December
2016
):
4528
4539
. https://doi.org/10.1121/1.4972118
142.
Dehghan-Niri
E.
and
Salamone
S.
, “
A Multi-Helical Ultrasonic Imaging Approach for the Structural Health Monitoring of Cylindrical Structures
,”
Structural Health Monitoring
14
, no. 
1
(September
2014
):
73
85
. https://doi.org/10.1177/1475921714548937
143.
Lydon
D.
,
Lydon
M.
,
Taylor
S.
,
Rincon
J. M. D.
,
Hester
D.
, and
Brownjohn
J.
, “
Development and Field Testing of a Vision-Based Displacement System Using a Low Cost Wireless Action Camera
,”
Mechanical Systems and Signal Processing
121
(April
2019
):
343
358
. https://doi.org/10.1016/j.ymssp.2018.11.015
144.
Ranade
R.
,
Zhang
J.
,
Lynch
J. P.
, and
Li
V. C.
, “
Influence of Micro-Cracking on the Composite Resistivity of Engineered Cementitious Composites
,”
Cement and Concrete Research
58
(April
2014
):
1
12
. https://doi.org/10.1016/j.cemconres.2014.01.002
145.
Al-Dahawi
A.
,
Yıldırım
G.
,
Öztürk
O.
, and
Şahmaran
M.
, “
Assessment of Self-Sensing Capability of Engineered Cementitious Composites within the Elastic and Plastic Ranges of Cyclic Flexural Loading
,”
Construction and Building Materials
145
(August
2017
):
1
10
. https://doi.org/10.1016/j.conbuildmat.2017.03.236
146.
Granger
S.
,
Loukili
A.
,
Pijaudier-Cabot
G.
, and
Chanvillard
G.
, “
Experimental Characterization of the Self-Healing of Cracks in an Ultra High Performance Cementitious Material: Mechanical Tests and Acoustic Emission Analysis
,”
Cement and Concrete Research
37
, no. 
4
(April
2007
):
519
527
. https://doi.org/10.1016/j.cemconres.2006.12.005
147.
Qiu
J.
,
Tan
H. S.
, and
Yang
E.
, “
Coupled Effects of Crack Width, Slag Content, and Conditioning Alkalinity on Autogenous Healing of Engineered Cementitious Composites
,”
Cement and Concrete Composites
73
(October
2016
):
203
212
. https://doi.org/10.1016/j.cemconcomp.2016.07.013
148.
Ferrara
L.
,
Mullem
T. V.
,
Alonso
M. C.
,
Antonaci
P.
,
Borg
R. P.
,
Cuenca
E.
,
Jefferson
A.
, et al., “
Experimental Characterization of the Self-Healing Capacity of Cement Based Materials and Its Effects on the Material Performance: A State of the Art Report by COST Action SARCOS WG2
,”
Construction and Building Materials
167
(April
2018
):
115
142
. https://doi.org/10.1016/j.conbuildmat.2018.01.143
149.
Yıldırım
G.
,
Khiavi
A. H.
,
Yeşilmen
S.
, and
Şahmaran
M.
, “
Self-Healing Performance of Aged Cementitious Composites
,”
Cement and Concrete Composites
87
(March
2018
):
172
186
. https://doi.org/10.1016/j.cemconcomp.2018.01.004
150.
Roig-Flores
M.
,
Pirritano
F.
,
Serna
P.
, and
Ferrara
L.
, “
Effect of Crystalline Admixtures on the Self-Healing Capability of Early-Age Concrete Studied by Means of Permeability and Crack Closing Tests
,”
Construction and Building Materials
114
(July
2016
):
447
457
. https://doi.org/10.1016/j.conbuildmat.2016.03.196
151.
Sherir
M. A. A.
,
Hossain
K. M. A.
, and
Lachemi
M.
, “
Self-Healing and Expansion Characteristics of Cementitious Composites with High Volume Fly Ash and MgO-Type Expansive Agent
,”
Construction and Building Materials
127
(November
2016
):
80
92
. https://doi.org/10.1016/j.conbuildmat.2016.09.125
152.
Lv
L.
,
Schlangen
E.
, and
Xing
F.
, “
Self-Sealing Cementitious Materials by Using Water-Swelling Rubber Particles
,”
Materials
10
, no. 
8
(August
2017
): 979. https://doi.org/10.3390/ma10080979
153.
Jonkers
H. M.
, “
Bacteria-Based Self-Healing Concrete
,”
Heron
56
, nos. 
1–2
(
2011
):
1
12
.
154.
Wiktor
V.
and
Jonkers
H. M.
, “
Quantification of Crack-Healing in Novel Bacteria-Based Self-Healing Concrete
,”
Cement and Concrete Composites
33
, no. 
7
(August
2011
):
763
770
. https://doi.org/10.1016/j.cemconcomp.2011.03.012
155.
Wang
J.
,
Tittelboom
K. V.
,
Belie
N. D.
, and
Verstraete
W.
, “
Use of Silica Gel or Polyurethane Immobilized Bacteria for Self-Healing Concrete
,”
Construction and Building Materials
26
, no. 
1
(January
2012
):
532
540
. https://doi.org/10.1016/j.conbuildmat.2011.06.054
156.
Wang
J. Y.
,
Soens
H.
,
Verstraete
W.
, and
Belie
N. D.
, “
Self-Healing Concrete by Use of Microencapsulated Bacterial Spores
,”
Cement and Concrete Research
56
(February
2014
):
139
152
. https://doi.org/10.1016/j.cemconres.2013.11.009
157.
Chen
H.
,
Qian
C.
, and
Huang
H.
, “
Self-Healing Cementitious Materials Based on Bacteria and Nutrients Immobilized Respectively
,”
Construction and Building Materials
126
(November
2016
):
297
303
. https://doi.org/10.1016/j.conbuildmat.2016.09.023
158.
Tziviloglou
E.
,
Wiktor
V.
,
Jonkers
H. M.
, and
Schlangen
E.
, “
Bacteria-Based Self-Healing Concrete to Increase Liquid Tightness of Cracks
,”
Construction and Building Materials
122
(September
2016
):
118
125
. https://doi.org/10.1016/j.conbuildmat.2016.06.080
159.
Dakhane
A.
,
Das
S.
,
Hansen
H.
,
O’Donnell
S.
,
Hanoon
F.
,
Rushton
A.
,
Perla
C.
, and
Neithalath
N.
, “
Crack Healing in Cementitious Mortars Using Enzyme-Induced Carbonate Precipitation: Quantification Based on Fracture Response
,”
Journal of Materials in Civil Engineering
30
, no. 
4
(April
2018
): 04018035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002218
160.
Li
L.
,
Li
Q.
, and
Zhang
F.
, “
Behavior of Smart Concrete Beams with Embedded Shape Memory Alloy Bundles
,”
Journal of Intelligent Material Systems and Structures
18
, no. 
10
(October
2007
):
1003
1014
. https://doi.org/10.1177/1045389X06071974
161.
Kuang
Y.
and
Ou
J.
, “
Self-Repairing Performance of Concrete Beams Strengthened Using Superelastic SMA Wires in Combination with Adhesives Released from Hollow Fibers
,”
Smart Materials and Structures
17
, no. 
2
(February
2008
): 025020. https://doi.org/10.1088/0964-1726/17/2/025020
162.
Li
X.
,
Li
M.
, and
Song
G.
, “
Energy-Dissipating and Self-Repairing SMA-ECC Composite Material System
,”
Smart Materials and Structures
24
, no. 
2
(January
2015
): 025024. https://doi.org/10.1088/0964-1726/24/2/025024
163.
Chu
H.
,
Jiang
L.
,
Song
Z.
,
Xu
Y.
,
Zhao
S.
, and
Xiong
C.
, “
Repair of Concrete Crack by Pulse Electro-Deposition Technique
,”
Construction and Building Materials
148
(September
2017
):
241
248
. https://doi.org/10.1016/j.conbuildmat.2017.05.033
164.
Otsuki
N.
and
Ryu
J.
, “
Use of Electrodeposition for Repair of Concrete with Shrinkage Cracks
,”
Journal of Materials in Civil Engineering
13
, no. 
2
(April
2001
):
136
142
. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:2(136)
This content is only available via PDF.
You do not currently have access to this content.