Abstract

Computational modeling of concrete behavior and most failure criteria for concrete strongly rely on the use of invariants of stress. These invariants allow a straightforward geometric interpretation of stress states and concrete failure surfaces in the three-dimensional Haigh-Westergaard stress space. Although second-order linear elastic relations have been traditionally applied to evaluate stresses in concrete, the magnitudes of concrete third-order parameters based on finite deformation theory—Murnaghan parameters l, m, n—are such that, if nonlinear stress-strain relations are considered, the stress invariants’ magnitudes are directly affected. In this work, acoustoelastic stress-strain relations for a general triaxial stress state and ultrasonically calculated second- and third-order elastic parameters are used in the evaluation of three high-strength concrete mixtures with compressive strengths: f′c = 43.0, 44.8, and 56.0 MPa (6.2, 6.5, and 8.1 ksi, respectively). The results demonstrate that nonlinear elastic effects introduce anisotropy when uniaxial stresses are applied and the magnitudes of concrete elastic and shear moduli change because of the applied stress field. When triaxial loads are considered, all stress invariants—first (I1), second (I2), and third (I3)—also undergo variations in their magnitudes. The stress-induced anisotropy due to uniaxial loading application and also the changes in the stress invariants’ magnitudes calls attention to the importance of considering nonlinear third-order effects in cement-based materials’ stress-strain relations and failure criteria.

References

1.
Hooke
R.
, “
Lectures de Potentia Restitutiva
,” in
Early Science in Oxford 8
, ed.
Gunther
R. T.
(
Oxford: Clarendon Press
,
1931
),
331
356
.
2.
Young
T.
, “
Mathematical Elements of Natural Philosophy
,” in
A Course of Lectures on Natural Philosophy and the Mechanical Arts
(
London
:
Joseph Johnson
,
1807
):
1
86
.
3.
Lamé
G.
,
Leçons sur la Théorie Mathématique de l’Élasticité des Corps Solides
(
Paris
:
Gauthier-Villars
,
1866
).
4.
Finger
J.
, “
Das Potential der inneren Krafte und die Beziehungen zwischen den Deformationen und den Spannungen in elastisch isotropen Korpern
,”
Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe
103
, no. 
IIa
(
1894
):
163
200
, 231–250.
5.
Brillouin
L.
, “
Sur les tensions de radiation
,”
Annales de Physique
10
, no. 
4
(
1925
):
528
586
, https://doi.org/10.1051/anphys/192510040528
6.
Murnaghan
F. D.
, “
Finite Deformations of an Elastic Solid
,”
American Journal of Mathematics
59
, no. 
2
(April
1937
):
235
260
, https://doi.org/10.2307/2371405
7.
Murnaghan
F. D.
,
Finite Deformation of an Elastic Solid
(
New York, NY
:
Wiley
,
1951
).
8.
Hughes
D. S.
and
Kelly
J. L.
, “
Second-Order Elastic Deformation of Solids
,”
Physical Review
92
, no. 
5
(December
1953
):
1145
1149
, https://doi.org/10.1103/PhysRev.92.1145
9.
Seeger
A.
and
Buck
O.
, “
Die Experimentelle Ermittlung der Elastischen Konstanten Höherer Ordnung
,”
Zeitschrift für Naturforschung A
15
, no. 
12
(December
1960
):
1056
1067
.
10.
Payan
C.
,
Garnier
V.
,
Moysan
J.
, and
Johnson
P. A.
, “
Determination of Third Order Elastic Constants in a Complex Solid Applying Coda Wave Interferometry
,”
Applied Physics Letters
94
, no. 
1
(January
2009
): 011904, https://doi.org/10.1063/1.3064129
11.
Lillamand
I.
,
Chaix
J.-F.
,
Ploix
M.-A.
, and
Garnier
V.
, “
Acoustoelastic Effect in Concrete Material under Uni-Axial Compressive Loading
,”
NDT & E International
43
, no. 
8
(November
2010
):
655
660
, https://doi.org/10.1016/j.ndteint.2010.07.001
12.
Payan
C.
,
Garnier
V.
, and
Moysan
J.
, “
Potential of Nonlinear Ultrasonic Indicators for Nondestructive Testing of Concrete
,”
Advances in Civil Engineering 2010
(
2010
): 238472.
13.
Nogueira
C. L.
and
Rens
K. L.
, “
Effect of Acoustoelasticity on Ultrasonic Pulses and Damage of Concrete under Tensile Stresses
,”
ACI Materials Journal
115
, no. 
3
(
2018
):
381
391
, https://doi.org/10.14359/51702184
14.
Nogueira
C. L.
and
Rens
K. L.
, “
Acoustoelastic Response of Concrete under Uniaxial Compression
,”
ACI Materials Journal
115
, no. 
3
(
2019
), https://doi.org/10.14359/51702184
15.
Truesdell
C.
and
Noll
W.
,
The Non-Linear Field Theories of Mechanics
(
Berlin
:
Springer-Verlag
,
1965
).
16.
Ledbetter
H. M.
and
Reed
R. P.
, “
Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron‐Nickel Alloys
,”
Journal of Physical and Chemical Reference Data
2
, no. 
3
(July
1973
):
531
618
, https://doi.org/10.1063/1.3253127
17.
Mehta
P. K.
,
Monteiro
P. J. M.
,
Helene
P. R. L.
, and
Paulon
V. A.
,
Concreto: Microestrutura, Propriedades e Materiais
[in Portuguese] (
São Paulo
:
IBRACON
,
2008
).
18.
Zarembo
L. K.
,
Krasil’nikov
V. A.
, and
Shkol’nik
I. E.
, “
Nonlinear Acoustics in a Problem of Diagnosing the Strength of Solids
,”
Strength of Materials
21
, no. 
11
(November
1989
):
1544
1551
, https://doi.org/10.1007/BF01529410
19.
Shkolnik
I. E.
, “
Effect of Nonlinear Response of Concrete on Its Elastic Modulus and Strength
,”
Cement and Concrete Composites
27
, nos. 
7–8
(August–September
2005
):
747
757
, https://doi.org/10.1016/j.cemconcomp.2004.12.006
20.
Lurie
A. I.
,
Theory of Elasticity
(
Berlin
:
Springer-Verlag
,
2005
).
21.
Chen
W.-F.
and
Saleeb
A. F.
,
Constitutive Equations for Engineering Materials: Elasticity and Modeling
(
Amsterdam, the Netherlands
:
Elsevier Science B. V.
,
1994
).
22.
Nogueira
C. L.
, “
Ultrasonic Evaluation of Acoustoelastic Parameters in Aluminum
,”
Journal of Materials in Civil Engineering
29
, no. 
10
(October
2017
): 04017158, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002009
23.
Abiza
Z.
,
Destrade
M.
, and
Ogden
R.W.
, “
Large Acoustoelastic Effect
,”
Wave Motion
49
, no. 
2
(March
2012
):
364
374
, https://doi.org/10.1016/j.wavemoti.2011.12.002
24.
Norris
A.
, “
Finite-Amplitude Waves in Solids
,” in
Nonlinear Acoustics
ed.
Hamilton
M. F.
and
Blackstock
D. T.
(
San Diego, CA
:
Academic Press
,
1998
),
263
277
.
25.
Smith
R. T.
, “
Stress-Induced Anisotropy in Solids–The Acousto-Elastic Effect
,”
Ultrasonics
1
, no. 
3
(July–September
1963
):
135
147
, https://doi.org/10.1016/0041-624X(63)90003-9
26.
Gamer
U.
and
Pao
Y.-H.
, “
Propagation of Disturbances in Predeformed Elastic-Plastic Materials
,”
Zeitschrift für Angewandte Mathematik und Mechanik
63
(
1983
): T158, https://doi.org/10.1002/zamm.19830631102
27.
Pao
Y.-H.
,
Sachse
W.
, and
Fukuoka
H.
, “
Acoustoelasticity and Ultrasonic Measurement of Residual Stress
,”
Physical Acoustics
vol. 
17
, ed.
Mason
W. P.
and
Thurston
R. N.
(
Orlando, FL
:
Academic Press
,
1984
):
61
143
.
28.
Pao
Y.-H.
and
Gamer
U.
, “
Acoustoelastic Waves in Orthotropic Media
,”
Journal of the Acoustical Society of America
77
, no. 
3
(March
1985
):
806
812
, https://doi.org/10.1121/1.392384
29.
Gandhi
N.
,
Michaels
J. E.
, and
Lee
S. J.
, “
Acoustoelastic Lamb Wave Propagation in a Homogeneous, Isotropic Aluminum Plate
,”
AIP Conference Proceedings
1335
, no. 
1
(
2011
):
161
168
.
30.
Gandhi
N.
,
Michaels
J. E.
, and
Lee
S. J.
, “
Acoustoelastic Lamb Wave Propagation in Biaxially Stressed Plates
,”
Journal of the Acoustical Society of America
132
, no. 
3
(
2012
):
1284
1293
, https://doi.org/10.1121/1.4740491
31.
Pei
N.
and
Bond
L. J.
, “
Higher Order Acoustoelastic Lamb Wave Propagation in Stressed Plates
,”
Journal of the Acoustical Society of America
140
, no. 
5
(
2016
):
3834
3843
, https://doi.org/10.1121/1.4967756
32.
Gandhi
N.
, “
Determination of Dispersion Curves for Acoustoelastic Lamb Wave Propagation
” (master’s thesis,
Georgia Institute of Technology
,
2010
).
This content is only available via PDF.
You do not currently have access to this content.