Abstract

This research focused on improving ultra high-performance concrete (UHPC) toughness through the addition of annealed plain carbon steel fibers and stainless steel fibers that both exhibit increased ductility and strain hardening compared with conventional steel fibers used for concrete reinforcement. Implementing optimized heat treatments and selecting proper alternative alloys can improve the postyield carrying capacity of UHPCs through plastic deformations, phase transformations, and fiber pullout. This research focused on the flexural response and dynamic penetration resistance of a UHPC known as Cor-Tuf with three different steel fiber types: plain carbon steel, stainless steel that can exhibit phase transformation-induced plasticity, and annealed carbon steel with reduced tensile strength but increased ductility and strain hardening. Annealed carbon steel fibers were able to reduce mass loss by 0.8 % for 5-cm-thick dynamic impact panels. By using a phase-transformable stainless steel, the ultimate flexural strength increased from 32.0 to 42.5 MPa (33 % increase) and the postimpact velocity decreased an average of 31.5 m/s for 2.5 and 5-cm-thick dynamic impact panels. Phase transformations (austenitic to martensitic) were quantified in the stainless steel fibers of postyielded UHPC specimens using a vibrating sample magnetometer. Stainless steel fibers sampled from the postyielded tensile face of a flexural beam increased from 75 to 107 emu/g. The results of the study evidence improvements in tensile properties and toughness that can be accomplished by modifying the stress versus strain response of steel fiber reinforcement and including new energy dissipation mechanisms such as phase transformation.

References

1.
Graybeal
B.
,
Ultra-High Performance Concrete, Report No. FHWA-HRT-11-038
(
Washington, DC
:
Federal Highway Administration
,
2011
).
2.
Song
P. S.
and
Hwang
S.
, “
Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete
,”
Construction and Building Materials
18
, no. 
9
(November
2004
):
669
673
. https://doi.org/10.1016/j.conbuildmat.2004.04.027
3.
Xu
B. W.
and
Shi
H. S.
, “
Correlations among Mechanical Properties of Steel Fiber Reinforced Concrete
,”
Construction and Building Materials
23
, no. 
12
(December
2009
):
3468
3474
. https://doi.org/10.1016/j.conbuildmat.2009.08.017
4.
Yoo
D.-Y.
and
Banthia
N.
, “
Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete: A Review
,”
Cement and Concrete Composites
73
(October
2016
):
267
280
. https://doi.org/10.1016/j.cemconcomp.2016.08.001
5.
Wille
K.
,
Naaman
A. E.
,
El-Tawil
S.
, and
Parra-Montesinos
G. J.
, “
Ultra-High Performance Concrete and Fiber Reinforced Concrete: Achieving Strength and Ductility without Heat Curing
,”
Materials and Structures
45
, no. 
3
(March
2012
):
309
324
. https://doi.org/10.1617/s11527-011-9767-0
6.
Japan Society of Civil Engineers
Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures (Draft)
(
Tokyo, Japan
:
JSCE
,
2006
).
7.
Burchfield
C. A.
,
Performance Assessment of Discontinuous Fibers in Fiber-Reinforced Concrete: Current State-of-the-Art, ERDC/GSL TR-17-19
(
Washington, DC
:
U.S. Army Corps of Engineers
,
2017
).
8.
Astarlioglu
S.
,
Krauthammer
T.
, and
Felice
C.
,
State-of-the-Art Report on Fiber-Reinforced, Ultra-High-Performance Concrete, Report No. CIPPS-TR-001-2013
(
Gainesville, FL
:
University of Florida
,
2013
).
9.
Lin
Z.
,
Kanda
T.
, and
Li
V. C.
, “
On Interface Property Characterization and Performance of Fiber Reinforced Cementitious Composites
,”
Journal of Concrete Science and Engineering
1
(September
1999
):
173
184
.
10.
Scott
D. A.
,
Long
W. R.
,
Moser
R. D.
,
Green
B. H.
,
O’Daniel
J. L.
, and
Williams
B. A.
,
Impact of Steel Fiber Size and Shape on the Mechanical Properties of Ultra-High Performance Concrete, ERDC/GSL-TR-15-22
(
Washington, DC
:
U.S. Army Corps of Engineers
,
2015
).
11.
Wille
K.
and
Naaman
A. E.
, “
Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete
,”
ACI Materials Journal
109
, no. 
4
(July
2012
):
479
488
.
12.
Rivera-Soto
P.
,
Moser
R. D.
,
McClelland
Z. B.
,
Williams
B. A.
, and
Williams
S. L.
, “
Thermal Processing and Alloys Selection to Modify Steel Fiber Performance in Ultra-High Performance Concrete
” (paper presentation, First International Interactive Symposium on UHPC,
Des Moines, IA
, July 18–20,
2016
).
13.
Graybeal
B. A.
,
Material Property Characterization of Ultra-High Performance Concrete, No. FHWA-HRT-06-103
(
McLean, VA
:
Federal Highway Administration
,
2006
).
14.
Banthia
N.
and
Trottier
J.-F.
, “
Concrete Reinforced with Deformed Steel Fibers, Part I: Bond-Slip Mechanisms
,”
ACI Materials Journal
91
, no. 
5
(September
1994
):
435
446
.
15.
Wille
K.
,
El-Tawil
S.
, and
Naaman
A. E.
, “
Properties of Strain Hardening Ultra-High Performance Fiber Reinforced Concrete (UHP-FRC) under Direct Tensile Loading
,”
Cement and Concrete Composites
48
(April
2014
):
53
66
. https://doi.org/10.1016/j.cemconcomp.2013.12.015
16.
Williams
E. M.
,
Graham
S. S.
,
Reed
P. A.
, and
Rushing
T. S.
,
Laboratory Characterization of Cor-Tuf Concrete with and without Steel Fibers
ERDC/GSL-TR-09-22 (
Washington, DC
:
U.S. Army Corps of Engineers
,
2009
).
17.
Green
B.
,
Moser
R.
,
Scott
D.
, and
Long
W.
, “
Ultra-High Performance Concrete History and Usage by the Corps of Engineers
,”
Advances in Civil Engineering Materials
4
, no. 
2
(July
2015
):
132
143
. https://doi.org/10.1520/ACEM20140031
18.
Standard Practice for Describing and Specifying Inductively Coupled Plasma Atomic Emission Spectrometers
, ASTM E1479-16 (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2016
). https://doi.org/10.1520/E1479-16
19.
Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques
(superseded), ASTM E1019-11 (
West Conshohocken, PA
:
ASTM International
, approved March 15,
2011
). https://doi.org/10.1520/E1019-11
20.
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
(superseded), ASTM C39/C39M-17b (
West Conshohocken, PA
:
ASTM International
, approved August 1,
2017
). https://doi.org/10.1520/C0039_C0039M-17B
21.
Ryu
G. S.
,
Kang
S. T.
,
Park
J. J.
,
Koh
K. T.
, and
Kim
S. W.
, “
Evaluation of Fundamental UHPC Properties According to the Shape of Steel Fiber
,”
Key Engineering Materials
452–453
(November
2010
):
717
720
. https://doi.org/10.4028/www.scientific.net/KEM.452-453.717
22.
Hassan
A. M. T.
,
Jones
S. W.
, and
Mahmud
G. H.
, “
Experimental Test Methods to Determine the Uniaxial Tensile and Compressive Behaviour of Ultra High Performance Fibre Reinforced Concrete (UHPFRC)
,”
Construction and Building Materials
37
(December
2012
):
874
882
. https://doi.org/10.1016/j.conbuildmat.2012.04.030
23.
Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading)
(superseded), ASTM C1609/C1609M-12 (
West Conshohocken, PA
:
ASTM International
, approved December 1,
2012
). https://doi.org/10.1520/C1609_C1609M-12
24.
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
(superseded), ASTM C192/C192M-16a (
West Conshohocken, PA
:
ASTM International
, approved June 1,
2016
). https://doi.org/10.1520/C0192_C0192M-16A
25.
Thornhill
T. F.
and
Reinhart
W. D.
,
Ballistic Penetration Test Results for Ductal® and Ultra-High Performance Concrete Samples, Sandia Report SAND2010-2222
(
Albuquerque, NM
:
Sandia National Laboratories
,
2010
).
26.
Mumtaz
K.
,
Takahashi
S.
,
Echigoya
J.
,
Kamada
Y.
,
Zhang
L. F.
,
Kikuchi
H.
,
Ara
K.
, and
Sato
M.
, “
Magnetic Measurements of Martensitic Transformation in Austenitic Stainless Steel after Room Temperature Rolling
,”
Journal of Materials Science
39
, no. 
1
(January
2004
):
85
97
. https://doi.org/10.1023/B:JMSC.0000007731.38154.e1
27.
Tavares
S. S. M.
,
Pardal
J. M.
,
Gomes da Silva
M. J.
,
Abreu
H. F. G.
, and
da Silva
M. R.
, “
Deformation Induced Martensitic Transformation in a 201 Modified Austenitic Stainless Steel
,”
Materials Characterization
60
, no. 
8
(August
2009
):
907
911
. https://doi.org/10.1016/j.matchar.2009.02.001
28.
Mangonon
P. L.
and
Thomas
G.
, “
Structure and Properties of Thermal-Mechanically Treated 304 Stainless Steel
,”
Metallurgical Transactions
1
, no. 
6
(June
1970
):
1587
1594
. https://doi.org/10.1007/BF02642004
29.
Childress
J.
,
Liou
S.
, and
Chien
C.
, “
Magnetic Properties of Metastable 304 Stainless Steel with BCC Structure
,”
Journal de Physique
49
, no. 
C8
(December
1988
):
C8-113
C8-114
.
30.
Hecker
S. S.
,
Stout
M. G.
,
Staudhammer
K. P.
, and
Smith
J. L.
, “
Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior
,”
Metallurgical Transactions A
13
, no. 
4
(April
1982
):
619
626
. https://doi.org/10.1007/BF02644427
31.
Sampark
P.
and
Majhi
G. K.
, “
Deformation Induced Phase Transformation of 304L Stainless Steel and Its Structural Characterization
” (Bachelor’s dissertation, National Institute of Technology, Rourkela,
2013
).
32.
De
A. K.
,
Murdock
D. C.
,
Mataya
M. C.
,
Speer
J. G.
, and
Matlock
D. K.
, “
Quantitative Measurement of Deformation-Induced Martensite in 304 Stainless Steel by X-Ray Diffraction
,”
Scripta Materialia
50
, no. 
12
(June
2004
):
1445
1449
. https://doi.org/10.1016/j.scriptamat.2004.03.011
33.
Murr
L. E.
,
Staudhammer
K. P.
, and
Hecker
S. S.
, “
Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II. Microstructural Study
,”
Metallurgical Transactions A
13
, no. 
4
(April
1982
):
627
635
. https://doi.org/10.1007/BF02644428
34.
Das
A.
,
Sivaprasad
S.
,
Ghosh
M.
,
Chakraborti
P. C.
, and
Tarafder
S.
, “
Morphologies and Characteristics of Deformation Induced Martensite during Tensile Deformation of 304 LN Stainless Steel
,”
Materials Science and Engineering: A
486
, nos. 
1–2
(July
2008
):
283
286
. https://doi.org/10.1016/j.msea.2007.09.005
35.
Talonen
J.
,
Hänninen
H.
,
Nenonen
P.
, and
Pape
G.
, “
Effect of Strain Rate on the Strain-Induced γ→ α′-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels
,”
Metallurgical and Materials Transactions A
36
, no. 
2
(February
2005
):
421
432
. https://doi.org/10.1007/s11661-005-0313-y
36.
Stout
M. G.
and
Follansbee
P. S.
, “
Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel
,”
Journal of Engineering Materials and Technology
108
, no. 
4
(October
1986
):
344
353
. https://doi.org/10.1115/1.3225893
This content is only available via PDF.
You do not currently have access to this content.