Abstract

In recent years, worldwide research has been facing the challenge of finding solutions able to decrease the environmental impact of cement and concrete production. Many strategies could be adopted in order to reach this goal, such as reducing the clinker factor in cement or producing alternative clinkers to portland clinker, in addition to the adoption of efficient water recycling processes in concrete production, thus reducing the consumption of natural resources. An interesting approach to implementing the different strategies is to develop concretes combining the use of cement and seawater, permitting a significant saving in fresh water consumption and offering an important benefit to countries that are facing a water shortage. Thanks to the recent technological improvement in the composite material sector, corrosion-free reinforcements have been successfully developed, thus proposing an alternative to steel rebars in concrete, especially in exposure conditions that are critical because of the presence of chloride, or even in combination with seawater. The use of a specialty binder based on an intrinsically low pH and a high sulfate resistance can be beneficial for the stability of the concrete and of the embedded glass-fiber–reinforced polymer rebars. This article compares the mineralogical and mechanical behavior of pastes and mortars containing (1) limestone portland cement, (2) sulfoaluminate cement and (3) a blend of the two, when mixed with seawater. Compressive strength and drying shrinkage tests were performed, and the results were interpreted on the basis of the microstructural data obtained through X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The results suggest that the phase assemblage of the systems and, in particular, the equilibria among the different Al2O3-Fe2O3-monovalent anion (AFm)/Al2O3-Fe2O3-trivalent anion (AFt) minerals play a key role in the strength development mechanism.

References

1.
Association Européenne du Ciment
Activity Report 2015
(
Brussels, Belgium
:
Association Européenne du Ciment
,
2016
).
2.
The World Business Council for Sustainable Development
The Cement Sustainability Initiative: CSI 2012 Progress Report
(
Geneva
:
The World Business Council for Sustainable Development
, June
2012
).
3.
Juenger
M. C. G.
,
Winnefeld
F.
,
Provis
J. L.
, and
Ideker
J. H.
, “
Advances in Alternative Cementitious Binders
,”
Cement and Concrete Research
41
, no. 
12
(December
2011
):
1232
1243
, https://doi.org/10.1016/j.cemconres.2010.11.012
4.
Imbabi
M. S.
,
Carrigan
C.
, and
McKenna
S.
, “
Trends and Developments in Green Cement and Concrete Technology
,”
International Journal of Sustainable Built Environment
1
, no. 
2
(December
2012
):
194
216
, https://doi.org/10.1016/j.ijsbe.2013.05.001
5.
Bernardo
G.
,
Telesca
A.
, and
Valenti
G. L.
, “
A Porosimetric Study of Calcium Sulfoaluminate Cement Pastes Cured at Early Ages
,”
Cement and Concrete Research
36
, no. 
6
(June
2006
):
1042
1047
, https://doi.org/10.1016/j.cemconres.2006.02.014
6.
Gastaldi
D.
,
Canonico
F.
,
Capelli
L.
,
Bianchi
M.
,
Pace
M. L.
,
Telesca
A.
, and
Valenti
G. L.
, “
Hydraulic Behaviour of Calcium Sulfoaluminate Cement Alone and in Mixture with Portland Cement
” (paper presentation, 13th International Congress on the Chemistry of Cement,
Madrid, Spain
, 3-8 July
2011
).
7.
Canonico
F.
, “
Spezielle Bindemittel als Alternative zu Portlandzement
” (paper presentation, 20th Internationale Baustofftagung, IBAUSIL Conference,
Weimar
, 12-14 September,
2018
).
8.
Next SR03. Schnellerhärtender Zement auf Basis von Calciumaluminatsulfat
[in German], ETA 13/0417 (
Berlin
:
Deutsches Institut für Bautechnik
,
2013
).
9.
Next SL05 NF. Schnellerhärtender Zement auf Basis von Calciumaluminatsulfat
[in German], ETA 13/0418 (
Berlin
:
Deutsches Institut für Bautechnik
,
2013
).
10.
Next SL05. Schnellerhärtender Zement auf Basis von Calciumaluminatsulfat
[in German], ETA 13/0419 (
Berlin
:
Deutsches Institut für Bautechnik
,
2013
).
11.
Nishida
T.
,
Otsuki
N.
,
Ohara
H.
,
Garba-Say
Z. M.
, and
Nagata
T.
, “
Some Considerations for the Applicability of Seawater as Mixing Water in Concrete
,”
Journal of Materials in Civil Engineering
27
, no. 
7
(July
2015
): B4014004, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001006
12.
Kaushik
S. K.
and
Islam
S.
, “
Suitability of Sea Water for Mixing Structural Concrete Exposed to a Marine Environment
,”
Cement and Concrete Composites
17
, no. 
3
(
1995
):
177
185
, https://doi.org/10.1016/0958-9465(95)00015-5
13.
Dewar
J. D.
,
The Workability and Compressive Strength of Concrete Made with Sea Water, Cement and Concrete Association TRA/374
(
London, UK
:
Cement and Concrete Association
, December
1963
).
14.
Mohammed
T. U.
,
Hamada
H.
, and
Yamaji
T.
, “
Performance of Seawater-Mixed Concrete in the Tidal Environment
,”
Cement and Concrete Research
34
, no. 
4
(April
2004
):
593
601
, https://doi.org/10.1016/j.cemconres.2003.09.020
15.
Neville
A.
, “
Seawater in the Mixture
,”
Concrete International
23
, no. 
1
(January
2001
):
48
51
.
16.
Xiao
J.
,
Qiang
C.
,
Nanni
A.
, and
Zhang
K.
, “
Use of Sea-Sand and Seawater in Concrete Construction: Current Status and Future Opportunities
,”
Construction and Building Materials
155
(November
2017
):
1101
1111
, https://doi.org/10.1016/j.conbuildmat.2017.08.130
17.
Ghorab
H. Y.
,
Hilal
M. S.
, and
Kishar
E. A.
, “
Effect of Mixing and Curing Waters on the Behaviour of Cement Pastes and Concrete Part I: Microstructure of Cement Pastes
,”
Cement and Concrete Research
19
, no. 
6
(
1989
):
868
878
, https://doi.org/10.1016/0008-8846(89)90099-9
18.
Taylor
H. F. W.
,
Cement Chemistry
, 2nd ed. (
London, UK
:
Thomas Telford
,
1997
).
19.
De Weerdt
K.
,
Colombo
A.
,
Coppola
L.
,
Justnes
H.
, and
Geiker
M. R.
, “
Impact of the Associated Cation on Chloride Binding of Portland Cement Paste
,”
Cement and Concrete Research
68
(February
2015
):
196
202
, https://doi.org/10.1016/j.cemconres.2014.01.027
20.
Cement - Part 1: Composition, Specifications and Conformity Criteria for Common Cements
, UNI EN 197-1:2011 (Milan, Italy: Italian Organization for Standardization, approved September 14,
2011
).
21.
Methods of Testing Cement – Part 1: Determination of Strength
(Withdrawn), UNI EN 196-1:2005 (Milan, Italy: Italian Organization for Standardization, approved February 16,
2005
).
22.
Malta Normale. Determinazione del Ritiro Idraulico. Prova di Laboratorio
(Withdrawn), UNI 6687:1973 (
Milan, Italy
:
Italian Organization for Standardization
, approved July 31,
1973
).
23.
Younis
A.
,
Ebead
U.
,
Suraneni
P.
, and
Nanni
A.
, “
Fresh and Hardened Properties of Seawater-Mixed Concrete
,”
Construction and Building Materials
190
(November
2018
):
276
286
, https://doi.org/10.1016/j.conbuildmat.2018.09.126
24.
Odler
I.
,
Special Inorganic Cements
(
London, UK
:
E & FN Spon
,
2000
).
25.
Baquerizo
L. G.
,
Matschei
T.
,
Scrivener
K. L.
,
Saeidpour
M.
, and
Wadsö
L.
, “
Hydration States of AFm Cement Phases
,”
Cement and Concrete Research
73
(July
2015
):
143
157
, https://doi.org/10.1016/j.cemconres.2015.02.011
26.
Chen
I. A.
,
Hargis
C. W.
, and
Juenger
M. C. G.
, “
Understanding Expansion in Calcium Sulfoaluminate–Belite Cements
,”
Cement and Concrete Research
42
, no. 
1
(January
2012
):
51
60
, https://doi.org/10.1016/j.cemconres.2011.07.010
27.
Balonis
M.
,
Lothenbach
B.
,
Le Saout
G.
, and
Glasser
F. P.
, “
Impact of Chloride in the Mineralogy of Hydrated Portland Cement Systems
,”
Cement and Concrete Research
40
, no. 
7
(July
2010
):
1009
1022
, https://doi.org/10.1016/j.cemconres.2010.03.002
28.
Aranda
M. A. G.
and
De La Torre
A. G.
, “
Sulfoaluminate Cement
,” in
Eco-Efficient Concrete
, (
Cambridge, UK
:
Woodhead Publishing
,
2013
),
488
522
.
29.
Glasser
F. P.
,
Kindness
A.
, and
Stronach
S. A.
, “
Stability and Solubility Relationship in AFm Phases: Part I. Chloride, Sulfate and Hydroxide
,”
Cement and Concrete Research
29
, no. 
6
(June
1999
):
861
866
, https://doi.org/10.1016/S0008-8846(99)00055-1
30.
Shi
Z.
,
Geiker
M. R.
,
Lothenbach
B.
,
De Weerdt
K.
,
Garzón
S. F.
,
Enermark-Rasmussen
K.
, and
Skibsted
J.
, “
Friedel’s Salt Profiles from Thermogravimetric Analysis and Thermodynamic Modelling of Portland Cement-Based Mortars Exposed to Sodium Chloride Solution
,”
Cement and Concrete Composites
78
(April
2017
):
73
83
, https://doi.org/10.1016/j.cemconcomp.2017.01.002
31.
Paul
G.
,
Boccaleri
E.
,
Buzzi
L.
,
Canonico
F.
, and
Gastaldi
D.
, “
Friedel’s Salt Formation in Sulfoaluminate Cements: A Combined XRD and 27Al MAS NMR Study
,”
Cement and Concrete Research
67
(January
2015
):
93
102
, https://doi.org/10.1016/j.cemconres.2014.08.004
This content is only available via PDF.
You do not currently have access to this content.