Abstract

This article presents an analytical investigation of the mobility of salts from contaminated aggregates in concrete. Salt-contaminated aggregates may have varied effects on the mechanical properties and durability of concrete. These depend primarily on the mobility of salts within the concrete matrix. Existing diffusion-based models for the mobility of salts in concrete focus on their intrusion from external sources (e.g., chloride penetration from deicing salts and brines). Such problems are well described by the closed-form solution of Fick’s law for diffusion in one dimension from a continuous source. Salt-contaminated aggregates represent a case of diffusion from a finite internal source rather than intrusion from a continuous external source. When the source is internal—as in the case of salt-contaminated aggregates—diffusion occurs in three dimensions and the source is finite. The 1-D solution is ill conditioned to model this problem, so new diffusion models must be introduced. This article presents two models of varying complexity that are well conditioned to model diffusion of salts from contaminated aggregates. First, the problem is modeled using Fick’s law for the simplified case of 3-D diffusion from an instantaneous point source in an infinite medium. Contaminated aggregates are treated as infinitesimal slugs of diffusing material. The same problem is then modeled using Fick’s law for the more realistic case of 3-D diffusion from an instantaneous spherical source, where contaminated aggregates are treated as approximately spherical. The intent of this article is to present an academic discussion on how chloride ions might migrate within the concrete matrix if they are assumed to do so by diffusion alone.

References

1.
Koch
G. H.
,
Brongers
M. P.
,
Thompson
N. G.
,
Virmani
Y. P.
, and
Payer
J. H.
,
Corrosion Cost and Preventive Strategies in the United States
(
McLean, VA
:
Federal Highway Administration
,
2002
).
2.
Ahmad
S.
, “
Reinforcement Corrosion in Concrete Structures, its Monitoring and Service Life Prediction––A Review
,”
Cement and Concrete Composites
25
, nos. 
4–5
(May–July
2003
):
459
471
, https://doi.org/10.1016/S0958-9465(02)00086-0
3.
Berke
N.
,
Bentur
A.
, and
Diamond
S.
,
Steel Corrosion in Concrete: Fundamentals and Civil Engineering Practice
(
Boca Raton, FL
:
CRC Press
,
2014
).
4.
Li
D.
,
Wei
R.
,
Li
L.
,
Guan
X.
, and
Mi
X.
, “
Pitting Corrosion of Reinforcing Steel Bars in Chloride Contaminated Concrete
,”
Construction and Building Materials
199
(February
2019
):
359
368
, https://doi.org/10.1016/j.conbuildmat.2018.12.003
5.
Chindaprasirt
P.
and
Chalee
W.
, “
Effect of Sodium Hydroxide Concentration on Chloride Penetration and Steel Corrosion of Fly Ash-Based Geopolymer Concrete under Marine Site
,”
Construction and Building Materials
63
(July
2014
):
303
310
, https://doi.org/10.1016/j.conbuildmat.2014.04.010
6.
Zhu
W.
,
François
R.
,
Fang
Q.
, and
Zhang
D.
, “
Influence of Long-Term Chloride Diffusion in Concrete and the Resulting Corrosion of Reinforcement on the Serviceability of RC Beams
,”
Cement and Concrete Composites
71
(August
2016
):
144
152
, https://doi.org/10.1016/j.cemconcomp.2016.05.003
7.
Chen
D.
and
Mahadevan
S.
, “
Chloride-Induced Reinforcement Corrosion and Concrete Cracking Simulation
,”
Cement and Concrete Composites
30
, no. 
3
(March
2008
):
227
238
, https://doi.org/10.1016/j.cemconcomp.2006.10.007
8.
Zhang
R.
,
Castel
A.
, and
François
R.
, “
Concrete Cover Cracking with Reinforcement Corrosion of RC Beam during Chloride-Induced Corrosion Process
,”
Cement and Concrete Research
40
, no. 
3
(March
2010
):
415
425
, https://doi.org/10.1016/j.cemconres.2009.09.026
9.
Broomfield
J. P.
,
Corrosion of Steel in Concrete: Understanding, Investigation and Repair
(
Boca Raton, FL
:
CRC Press
,
2003
).
10.
Gonzalez
J. A.
,
Algaba
J. S.
, and
Andrade
C.
, “
Corrosion of Reinforcing Bars in Carbonated Concrete
,”
British Corrosion Journal
15
, no. 
3
(July
2013
):
135
139
, https://doi.org/10.1179/bcj.1980.15.3.135
11.
Moreno
M.
,
Morris
W.
,
Alvarez
M. G.
, and
Duffó
G. S.
, “
Corrosion of Reinforcing Steel in Simulated Concrete Pore Solutions: Effect of Carbonation and Chloride Content
,”
Corrosion Science
46
, no. 
11
(November
2004
):
2681
2699
, https://doi.org/10.1016/j.corsci.2004.03.013
12.
Li
L.
and
Sagüés
A. A.
, “
Chloride Corrosion Threshold of Reinforcing Steel in Alkaline Solutions—Open-Circuit Immersion Tests
,”
Corrosion
57
, no. 
1
(January
2001
):
19
28
, https://doi.org/10.5006/1.3290325
13.
Glass
G. K.
and
Buenfeld
N. R.
, “
The Presentation of the Chloride Threshold Level for Corrosion of Steel in Concrete
,”
Corrosion Science
39
, no. 
5
(May
1997
):
1001
1013
, https://doi.org/10.1016/S0010-938X(97)00009-7
14.
Figueira
R. B.
,
Sadovski
A.
,
Melo
A. P.
, and
Pereira
E. V.
, “
Chloride Threshold Value to Initiate Reinforcement Corrosion in Simulated Concrete Pore Solutions: The Influence of Surface Finishing and pH
,”
Construction and Building Materials
141
(June
2017
):
183
200
, https://doi.org/10.1016/j.conbuildmat.2017.03.004
15.
Angst
U.
,
Elsener
B.
,
Larsen
C. K.
, and
Vennesland
Ø.
, “
Critical Chloride Content in Reinforced Concrete—A Review
,”
Cement and Concrete Research
39
, no. 
12
(December
2009
):
1122
1138
, https://doi.org/10.1016/j.cemconres.2009.08.006
16.
Costa
A.
and
Appleton
J.
, “
Chloride Penetration into Concrete in Marine Environment—Part I: Main Parameters Affecting Chloride Penetration
,”
Materials and Structures
32
, no. 
4
(May
1999
): 252, https://doi.org/10.1007/BF02479594
17.
Montemor
M. F.
,
Simões
A. M. P.
, and
Ferreira
M. G. S.
, “
Chloride-Induced Corrosion on Reinforcing Steel: From the Fundamentals to the Monitoring Techniques
,”
Cement and Concrete Composites
25
, nos. 
4–5
(May–July
2003
):
491
502
, https://doi.org/10.1016/S0958-9465(02)00089-6
18.
Basheer
L.
,
Kropp
J.
, and
Cleland
D. J.
, “
Assessment of the Durability of Concrete from Its Permeation Properties: A Review
,”
Construction and Building Materials
15
, nos. 
2–3
(March/April
2001
):
93
103
, https://doi.org/10.1016/S0950-0618(00)00058-1
19.
Thomas
M. D. A.
and
Bamforth
P. B.
, “
Modelling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag
,”
Cement and Concrete Research
29
, no. 
4
(April
1999
):
487
495
, https://doi.org/10.1016/S0008-8846(98)00192-6
20.
Lehner
P.
,
Ghosh
P.
, and
Konečný
P.
, “
Statistical Analysis of Time Dependent Variation of Diffusion Coefficient for Various Binary and Ternary Based Concrete Mixtures
,”
Construction and Building Materials
183
(September
2018
):
75
87
, https://doi.org/10.1016/j.conbuildmat.2018.06.048
21.
Luping
T.
and
Gulikers
J.
, “
On the Mathematics of Time-Dependent Apparent Chloride Diffusion Coefficient in Concrete
,”
Cement and Concrete Research
37
, no. 
4
(April
2007
):
589
595
, https://doi.org/10.1016/j.cemconres.2007.01.006
22.
Dong
S.
,
Zhao
B.
,
Lin
C.
,
Du
R.
,
Hu
R.
, and
Zhang
G. X.
, “
Corrosion Behavior of Epoxy/Zinc Duplex Coated Rebar Embedded in Concrete in Ocean Environment
,”
Construction and Building Materials
28
, no. 
1
(March
2012
):
72
78
, https://doi.org/10.1016/j.conbuildmat.2011.08.026
23.
Sagüés
A. A.
,
Lee
J. B.
,
Chang
X.
,
Pickering
H.
,
Nystrom
E.
,
Carpenter
W.
,
Kranc
S. C.
, et al.,
Corrosion of Epoxy-Coated Rebar in Florida Bridges
(
Tallahassee, FL
:
Florida Department of Transportation
,
1994
).
24.
Smith
J. L.
and
Virmani
Y. P.
,
Performance of Epoxy Coated Rebars in Bridge Decks
(
McLean, VA
:
Federal Highway Administration
,
1996
).
25.
Smith
L. L.
,
Kessler
R. J.
, and
Powers
R. G.
, “
Corrosion of Epoxy-Coated Rebar in a Marine Environment
,”
Transportation Research Circular
403
(March
1993
):
36
45
.
26.
de Rincón
O. T.
,
Pérez
O.
,
Paredes
E.
,
Caldera
Y.
,
Urdaneta
C.
, and
Sandoval
I.
, “
Long-Term Performance of ZnO as a Rebar Corrosion Inhibitor
,”
Cement and Concrete Composites
24
, no. 
1
(October
2002
):
79
87
, https://doi.org/10.1016/S0958-9465(01)00029-4
27.
González
J. A.
and
Andrade
C.
, “
Effect of Carbonation, Chlorides and Relative Ambient Humidity on the Corrosion of Galvanized Rebars Embedded in Concrete
,”
British Corrosion Journal
17
, no. 
1
(January
2013
):
21
28
, https://doi.org/10.1179/000705982798274589
28.
Castro-Borges
P.
,
Troconis-Rincón
O.
,
Moreno
E. I.
,
Torres-Acosta
A. A.
,
Martinez-Madrid
M.
, and
Knudsen
A.
, “
Performance of a 60-Year-Old Concrete Pier with Stainless Steel Reinforcement
,”
Materials Performance
41
, no. 
10
(October
2002
):
50
55
.
29.
Knudsen
A.
,
Jensen
F. M.
,
Klinghoffer
O.
, and
Skovsgaard
T.
, “
Cost-Effective Enhancement of Durability of Concrete Structures by Intelligent Use of Stainless Steel Reinforcement
,” in
Proceedings of the International Conference on Corrosion and Rehabilitation of Reinforced Concrete Structures
(
Washington, DC
:
Federal Highway Administration
,
1998
).
30.
Okelo
R.
and
Yuan
R. L.
, “
Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete
,”
Journal of Composites for Construction
9
, no. 
3
(June
2005
):
203
213
, https://doi.org/10.1061/(ASCE)1090-0268(2005)9:3(203)
31.
Bakis
C. E.
,
Bank
L. C.
,
Brown
V. L.
,
Cosenza
E.
,
Davalos
J. F.
,
Lesko
J. J.
,
Machida
A.
,
Rizkalla
S. H.
, and
Triantafillou
T. C.
, “
Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review
,”
Journal of Composites for Construction
6
, no. 
2
(May
2002
):
73
87
, https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
32.
Benmokrane
B.
,
Wang
P.
,
Ton-That
T. M.
,
Rahman
H.
, and
Robert
J.-F.
, “
Durability of Glass Fiber-Reinforced Polymer Reinforcing Bars in Concrete Environment
,”
Journal of Composites for Construction
6
, no. 
3
(August
2002
):
143
153
, https://doi.org/10.1061/(ASCE)1090-0268(2002)6:3(143)
33.
Kassir
M. K.
and
Ghosn
M.
, “
Chloride-Induced Corrosion of Reinforced Concrete Bridge Decks
,”
Cement and Concrete Research
32
, no. 
1
(January
2002
):
139
143
, https://doi.org/10.1016/S0008-8846(01)00644-5
34.
Pedeferri
P.
, “
Cathodic Protection and Cathodic Prevention
,”
Construction and Building Materials
10
, no. 
5
(July
1996
):
391
402
, https://doi.org/10.1016/0950-0618(95)00017-8
35.
Bertolini
L.
,
Bolzoni
F.
,
Cigada
A.
,
Pastore
T.
, and
Pedeferri
P.
, “
Cathodic Protection of New and Old Reinforced Concrete Structures
,”
Corrosion Science
35
, nos. 
5–8
(
1993
):
1633
1639
, https://doi.org/10.1016/0010-938X(93)90393-U
36.
Berkeley
K. G. C.
and
Pathmanaban
S.
,
Cathodic Protection of Reinforcement Steel in Concrete
(
Kent, UK
:
Butterworths and Company
,
1990
).
37.
Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary
, ACI 318R-14 (
Farmington Hills, MI
:
American Concrete Institute
,
2014
).
38.
Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete
, ASTM C1602-12 (
West Conshohocken, PA
:
ASTM International
,
2012
). https://doi.org/10.1520/C1602_C1602M-18
39.
Standard Specification for Portland Cement
, ASTM C150-18 (
West Conshohocken PA
:
ASTM International
,
2018
). https://doi.org/10.1520/C0150_C0150M-18
40.
Xiao
J.
,
Qiang
C.
,
Nanni
A.
, and
Zhang
K.
, “
Use of Sea-Sand and Seawater in Concrete Construction: Current Status and Future Opportunities
,”
Construction and Building Materials
155
(November
2017
):
1101
1111
, https://doi.org/10.1016/j.conbuildmat.2017.08.130
41.
Neville
A.
, “
Seawater in the Mixture
,”
Concrete International
23
, no. 
1
(January
2001
):
48
51
.
42.
Palzer
D.
, “
Entwicklungsstand von Recyclingbeton in Europa und den USA sowie dessen Verbreitung und Förderung in der Baupraxis
,” (Master’s thesis,
Hochschule Konstanz University of Applied Sciences
,
2016
).
43.
Rao
A.
,
Jha
K. N.
, and
Misra
S.
, “
Use of Aggregates from Recycled Construction and Demolition Waste in Concrete
,”
Resources, Conservation and Recycling
50
, no. 
1
(March
2007
):
71
81
, https://doi.org/10.1016/j.resconrec.2006.05.010
44.
Srubar
W. V.
 III
, “
Stochastic Service-Life Modeling of Chloride-Induced Corrosion in Recycled-Aggregate Concrete
,”
Cement and Concrete Composites
55
(January
2015
):
103
111
, https://doi.org/10.1016/j.cemconcomp.2014.09.003
45.
McGrath
P. F.
and
Hooton
R. D.
, “
Re-Evaluation of the AASHTO T259 90-Day Salt Ponding Test
,”
Cement and Concrete Research
29
, no. 
8
(August
1999
):
1239
1248
, https://doi.org/10.1016/S0008-8846(99)00058-7
46.
Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration
, AASHTO T259 (
Washington, DC
:
American Association of State Highway Transportation Officials
,
2002
).
47.
Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding
, ASTM C1543-10a (
West Conshohocken, PA
:
ASTM International
,
2010
). https://doi.org/10.1520/C1543-10A
48.
Crank
J.
,
The Mathematics of Diffusion
(
Oxford
:
Oxford University Press
,
1979
).
49.
De Weerdt
K.
,
Orsáková
D.
,
Müller
A. C. A.
,
Larsen
C. K.
,
Pedersen
B.
, and
Geiker
M. R.
, “
Towards the Understanding of Chloride Profiles in Marine Exposed Concrete, Impact of Leaching and Moisture Content
,”
Construction and Building Materials
120
(September
2016
):
418
431
, https://doi.org/10.1016/j.conbuildmat.2016.05.069
50.
Kim
J.
,
McCarter
W. J.
,
Suryanto
B.
,
Nanukuttan
S.
,
Basheer
P. A. M.
, and
Chrisp
T. M.
, “
Chloride Ingress into Marine Exposed Concrete: A Comparison of Empirical-and Physically-Based Models
,”
Cement and Concrete Composites
72
(September
2016
):
133
145
, https://doi.org/10.1016/j.cemconcomp.2016.06.002
51.
Pack
S.-W.
,
Jung
M.-S.
,
Song
H.-W.
,
Kim
S.-H.
, and
Ann
K. Y.
, “
Prediction of Time Dependent Chloride Transport in Concrete Structures Exposed to a Marine Environment
,”
Cement and Concrete Research
40
, no. 
2
(February
2010
):
302
312
, https://doi.org/10.1016/j.cemconres.2009.09.023
52.
Andrade
C.
,
Díez
J. M.
, and
Alonso
C.
, “
Mathematical Modeling of a Concrete Surface ‘Skin Effect’ on Diffusion in Chloride Contaminated Media
,”
Advanced Cement Based Materials
6
, no. 
2
(August
1997
):
39
44
, https://doi.org/10.1016/S1065-7355(97)00002-3
53.
Ann
K. Y.
,
Ahn
J. H.
, and
Ryou
J. S.
, “
The Importance of Chloride Content at the Concrete Surface in Assessing the Time to Corrosion of Steel in Concrete Structures
,”
Construction and Building Materials
23
, no. 
1
(January
2009
):
239
245
, https://doi.org/10.1016/j.conbuildmat.2007.12.014
54.
Snyder
K. A.
, “
The Relationship between the Formation Factor and the Diffusion Coefficient of Porous Materials Saturated with Concentrated Electrolytes: Theoretical and Experimental Considerations
,”
Concrete Science and Engineering
3
, no. 
12
(December
2001
):
216
224
.
55.
Bentz
D. P.
,
Lura
P.
, and
Roberts
J. W.
, “
Mixture Proportioning for Internal Curing
,”
Concrete International
27
, no. 
2
(February
2005
):
35
40
.
56.
Bentz
D. P.
and
Weiss
W. J.
,
Internal Curing: A 2010 State-of-the-Art Review
(
Gaithersburg, MD
:
National Institute of Standards and Technology
,
2011
).
57.
Baroghel-Bouny
V.
,
Belin
P.
,
Maultzsch
M.
, and
Henry
D.
, “
AgNO3 Spray Tests: Advantages, Weaknesses, and Various Applications to Quantify Chloride Ingress into Concrete. Part 1: Non-Steady-State Diffusion Tests and Exposure to Natural Conditions
,”
Materials and Structures
40
, no. 
8
(October
2007
): 759, https://doi.org/10.1617/s11527-007-9233-1
58.
Collepardi
M.
,
Marcialis
A.
, and
Turriziani
R.
, “
Penetration of Chloride Ions into Cement Pastes and Concretes
,”
Journal of the American Ceramic Society
55
, no. 
10
(October
1972
):
534
535
, https://doi.org/10.1111/j.1151-2916.1972.tb13424.x
59.
He
F.
,
Shi
C.
,
Yuan
Q.
,
An
X.
, and
Tong
B.
, “
Calculation of Chloride Concentration at Color Change Boundary of AgNO3 Colorimetric Measurement
,”
Cement and Concrete Research
41
, no. 
11
(November
2011
):
1095
1103
, https://doi.org/10.1016/j.cemconres.2011.06.008
60.
He
F.
,
Shi
C.
,
Yuan
Q.
,
Chen
C.
, and
Zheng
K.
, “
AgNO3-Based Colorimetric Methods for Measurement of Chloride Penetration in Concrete
,”
Construction and Building Materials
26
, no. 
1
(January
2012
):
1
8
, https://doi.org/10.1016/j.conbuildmat.2011.06.003
61.
Otsuki
N.
,
Nagataki
S.
, and
Nakashita
K.
, “
Evaluation of the AgNO3 Solution Spray Method for Measurement of Chloride Penetration into Hardened Cementitious Matrix Materials
,”
Construction and Building Materials
7
, no. 
4
(December
1993
):
195
201
, https://doi.org/10.1016/0950-0618(93)90002-T
62.
Yang
C.-C.
and
Liang
C.-H.
, “
A Modified Colorimetric Method to Determine the Chloride Profile from the Ponding Test
,”
Journal of the Chinese Institute of Engineers
37
, no. 
4
(July
2013
):
419
427
, https://doi.org/10.1080/02533839.2013.799948
63.
Yuan
Q.
,
Shi
C.
,
He
F.
,
De Schutter
G.
,
Audenaert
K.
, and
Zheng
K.
, “
Effect of Hydroxyl Ions on Chloride Penetration Depth Measurement Using the Colorimetric Method
,”
Cement and Concrete Research
38
, no. 
10
(October
2008
):
1177
1180
, https://doi.org/10.1016/j.cemconres.2008.04.003
64.
De Weerdt
K.
,
Colombo
A.
,
Coppola
L.
,
Justnes
H.
, and
Geiker
M. R.
, “
Impact of the Associated Cation on Chloride Binding of Portland Cement Paste
,”
Cement and Concrete Research
68
(February
2015
):
196
202
, https://doi.org/10.1016/j.cemconres.2014.01.027
65.
Azad
V. J.
,
Erbektas
A. R.
,
Qiao
C.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Relating the Formation Factor and Chloride Binding Parameters to the Apparent Chloride Diffusion Coefficient of Concrete
,”
Journal of Materials in Civil Engineering
31
, no. 
2
(February
2019
): 04018392, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002615
66.
Luping
T.
and
Nilsson
L.-O.
, “
Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars
,”
Cement and Concrete Research
23
, no. 
2
(March
1993
):
247
253
, https://doi.org/10.1016/0008-8846(93)90089-R
This content is only available via PDF.
You do not currently have access to this content.