Abstract

Flame-retardant composites have been researched for more than four decades, and demands are on the rise for this type of product in various applications. Since bio-composites have become popular these days, researchers have turned their attention to producing flame-retardant bio-composites. The main advantage of the bio-composite is its easy degradation process by naturally occurring bio-components. These types of composites can be partially biodegradable or fully biodegradable, and the rate of the degradability depends on the contents of the material. Partially biodegradable ones generally contain natural fiber as a reinforcement, along with a nonbiodegradable synthetic resin, while fully biodegradable ones contain either only biopolymers or a blend of natural fiber and biopolymer. Generally, flame-retardant bio-composites contain an additional flame-retardant filler material as well. This article will try to review the studies that have taken place on developing flame-retardant bio-composites and try to point out some key factors by which the properties of the end product may be controlled, so that the end products of the desired properties can be produced in further research.

References

1.
Wagner
P. A.
,
Little
B. J.
,
Hart
K. R.
, and
Ray
R. I.
, “
Biodegradation of Composite Materials
,”
International Biodeterioration & Biodegradation
38
, no. 
2
(
1996
):
125
132
, https://doi.org/10.1016/S0964-8305(96)00036-4
2.
Reddy
N.
, “
A Review on Completely Biodegradable Composites Developed Using Soy-Based Matrices
,”
Journal of Reinforced Plastics and Composites
34
, no. 
18
(
2015
):
1457
1475
, https://doi.org/10.1177/0731684415573815
3.
Kalka
S.
,
Huber
T.
,
Steinberg
J.
,
Baronian
K.
,
Müssig
J.
, and
Staiger
M. P.
, “
Biodegradability of All-Cellulose Composite Laminates
,”
Composites Part A: Applied Science and Manufacturing
59
(April
2014
):
37
44
, https://doi.org/10.1016/j.compositesa.2013.12.012
4.
Fowler
P. A.
,
Hughes
J. M.
, and
Elias
R. M.
, “
Biocomposites: Technology, Environmental Credentials and Market Forces
,”
Journal of the Science of Food and Agriculture
86
, no. 
12
(
2006
):
1781
1789
, https://doi.org/10.1002/jsfa.2558
5.
John
M. J.
and
Thomas
S.
, “
Biofibres and Biocomposites
,”
Carbohydrate Polymers
71
, no. 
3
(
2008
):
343
364
, https://doi.org/10.1016/j.carbpol.2007.05.040
6.
Sain
M.
,
Park
S. H.
,
Suhara
F.
, and
Law
S.
, “
Flame Retardant and Mechanical Properties of Natural Fibre–PP Composites Containing Magnesium Hydroxide
,”
Polymer Degradation and Stability
83
, no. 
2
(
2004
):
363
367
, https://doi.org/10.1016/S0141-3910(03)00280-5
7.
Kozłowski
R.
and
Władyka-Przybylak
M.
, “
Flammability and Fire Resistance of Composites Reinforced by Natural Fibers
,”
Polymers for Advanced Technologies
19
, no. 
6
(
2008
):
446
453
, https://doi.org/10.1002/pat.1135
8.
Holbery
J.
and
Houston
D.
, “
Natural-Fiber-Reinforced Polymer Composites in Automotive Applications
,”
The Journal of The Minerals, Metals & Materials Society
58
, no. 
11
(
2006
):
80
86
, https://doi.org/10.1007/s11837-006-0234-2
9.
Abdelmouleh
M.
,
Boufi
S.
,
Belgacem
M. N.
, and
Dufresne
A.
, “
Short Natural-Fibre Reinforced Polyethylene and Natural Rubber Composites: Effect of Silane Coupling Agents and Fibres Loading
,”
Composites Science and Technology
67
, nos. 
7–8
(
2007
):
1627
1639
, https://doi.org/10.1016/j.compscitech.2006.07.003
10.
Hilado
C. J.
,
Flammability Handbook for Plastics
(
Lancaster, PA
:
Technomic Publishing
,
1998
.)
11.
Kozłowski
R.
and
Helwig
M.
, “
Progress in Fire Retardants for Lignocellulosic Materials
” (paper presentation,
Fifth Arab International Conference on Material Science and Materials and Fire
,
Alexandria, Egypt
, March 22–25,
1998
),
1
2
.
12.
Horrocks
A. R.
and
Kandola
B. K.
, “
Flammability and Fire Resistance of Composites
,” in
Design and Manufacture of Textile Composites
, 1st ed., ed.
Long
A. C.
(
Cambridge
:
Woodhead Publishing Limited
,
2005
),
330
363
.
13.
Rigolo
M.
and
Woodhams
R. T.
, “
Basic Magnesium Carbonate Flame Retardants for Polypropylene
,”
Polymer Engineering and Science
32
, no. 
5
(
1992
):
327
334
, https://doi.org/10.1002/pen.760320505
14.
Lewin
M.
and
Sello
S. B.
, “
Technology and Test Methods of Flameproofing of Cellulosics
,” in
Flame-Retardant Polymeric Materials
, 1st ed., eds.
Lewin
M.
,
Atlas
S. M.
, and
Pearce
E. M.
(
New York
:
Plenum Press
,
1975
),
19
136
.
15.
Kozlowski
R.
and
Wladyka-Przybylak
M.
, “
Natural Polymers, Wood and Lignocellulosic Materials
,” in
Fire Retardant Materials
, eds.
Horrocks
A. R.
and
Price
D.
(
Cambridge
:
Woodhead Publishing Limited
,
2001
),
293
317
.
16.
Zhu
S.
and
Shi
W.
, “
Thermal Degradation of a New Flame Retardant Phosphate Methacrylate Polymer
,”
Polymer Degradation and Stability
80
, no. 
2
(
2003
):
217
222
, https://doi.org/10.1016/S0141-3910(02)00401-9
17.
Bar
M.
,
Alagirusamy
R.
, and
Das
A.
, “
Flame Retardant Polymer Composites
,”
Fibers and Polymers
16
, no. 
4
(
2015
):
705
717
, https://doi.org/10.1007/s12221-015-0705-6
18.
Hornsby
P. R.
and
Watson
C. L.
, “
A Study of the Mechanism of Flame Retardance and Smoke Suppression in Polymers Filled with Magnesium Hydroxide
,”
Polymer Degradation and Stability
30
, no. 
1
(
1990
):
73
87
, https://doi.org/10.1016/0141-3910(90)90118-Q
19.
Rothon
R. N.
and
Hornsby
P. R.
, “
Flame Retardant Effects of Magnesium Hydroxide
,”
Polymer Degradation and Stability
54
, nos. 
2–3
(
1996
):
383
385
, https://doi.org/10.1016/S0141-3910(96)00067-5
20.
Camino
G.
,
Costa
L.
, and
di Cortemiglia
M. P. L.
, “
Overview of Fire Retardant Mechanisms
,”
Polymer Degradation and Stability
33
, no. 
2
(
1991
):
131
154
, https://doi.org/10.1016/0141-3910(91)90014-I
21.
Schindler
W. D.
and
Hauser
P. J.
,
Chemical Finishing of Textiles
(
Cambridge
:
Woodhead Publishing
,
2004
).
22.
Xie
R.
,
Qu
B.
, and
Hu
K.
, “
Dynamic FTIR Studies of Thermo-Oxidation of Expandable Graphite-Based Halogen-Free Flame Retardant LLDPE Blends
,”
Polymer Degradation and Stability
72
, no. 
2
(
2001
):
313
321
, https://doi.org/10.1016/S0141-3910(01)00026-X
23.
Ahmad Ramazani
S. A.
,
Rahimi
A.
,
Frounchi
M.
, and
Radman
S.
, “
Investigation of Flame Retardancy and Physical–Mechanical Properties of Zinc Borate and Aluminum Hydroxide Propylene Composites
,”
Materials & Design
29
, no. 
5
(
2008
):
1051
1056
, https://doi.org/10.1016/j.matdes.2007.04.003
24.
Carpentier
F.
,
Bourbigot
S.
,
Le Bras
M.
,
Delobel
R.
, and
Foulon
M.
, “
Charring of Fire Retarded Ethylene Vinyl Acetate Copolymer–Magnesium Hydroxide/Zinc Borate Formulations
,”
Polymer Degradation and Stability
69
, no. 
1
(
2000
):
83
92
, https://doi.org/10.1016/S0141-3910(00)00044-6
25.
Tai
C. M.
and
Li
R. K. Y.
, “
Mechanical Properties of Flame Retardant Filled Polypropylene Composites
,”
Journal of Applied Polymer Science
80
, no. 
14
(
2001
):
2718
2728
, https://doi.org/10.1002/app.1386
26.
Kourtides
D. A.
,
Gilwee
W. J.
 Jr.
, and
Parker
J. A.
, “
Thermochemical Characterization of Some Thermally Stable Thermoplastic and Thermoset Polymers
,”
Polymer Engineering and Science
19
, no. 
1
(
1979
):
24
29
, https://doi.org/10.1002/pen.760190105
27.
Mouritz
A. P.
and
Gibson
A. G.
,
Fire Properties of Polymer Composite Materials
(
Dordrecht, the Netherlands
:
Springer
,
2006
).
28.
Gómez
E. F.
and
Michel
F. C.
 Jr.
, “
Biodegradability of Conventional and Bio-Based Plastics and Natural Fiber Composites during Composting, Anaerobic Digestion and Long-Term Soil Incubation
,”
Polymer Degradation and Stability
98
, no. 
12
(
2013
):
2583
2591
, https://doi.org/10.1016/j.polymdegradstab.2013.09.018
29.
Albertsson
A. C.
, “
Degradable Polymers
,”
Journal of Macromolecular Science, Part A: Pure and Applied Chemistry
30
, nos. 
9–10
(
1993
):
757
765
, https://doi.org/10.1080/10601329308021261
30.
Suppakarn
N.
and
Jarukumjorn
K.
, “
Mechanical Properties and Flammability of Sisal/PP Composites: Effect of Flame Retardant Type and Content
,”
Composites Part B: Engineering
40
, no. 
7
(
2009
):
613
618
, https://doi.org/10.1016/j.compositesb.2009.04.005
31.
Subasinghe
A.
,
Das
R.
, and
Bhattacharyya
D.
, “
Study of Thermal, Flammability and Mechanical Properties of Intumescent Flame Retardant PP/Kenaf Nanocomposites
,”
International Journal of Smart and Nano Materials
7
, no. 
3
(
2016
):
202
220
, https://doi.org/10.1080/19475411.2016.1239315
32.
Lecouvet
B.
,
Sclavons
M.
,
Bailly
C.
, and
Bourbigot
S.
, “
A Comprehensive Study of the Synergistic Flame Retardant Mechanisms of Halloysite in Intumescent Polypropylene
,”
Polymer Degradation and Stability
98
, no. 
11
(
2013
):
2268
2281
, https://doi.org/10.1016/j.polymdegradstab.2013.08.024
33.
Zhang
K.
,
Gong
Y.
,
Niu
P.
,
Wang
X.
, and
Yang
J.
, “
Properties of Polypropylene/Hemp Fibers Flame-Retardant Composites: Effects of Different Processing Methods
,”
Journal of Reinforced Plastics and Composites
32
, no. 
9
(
2013
):
644
653
, https://doi.org/10.1177/0731684412472247
34.
Khanjanzadeh
H.
,
Tabarsa
T.
, and
Shakeri
A.
, “
Morphology, Dimensional Stability and Mechanical Properties of Polypropylene-Wood Flour Composites with and without Nanoclay
,”
Journal of Reinforced Plastics and Composites
31
, no. 
5
(
2017
):
341
350
, https://doi.org/10.1177/0731684412438793
35.
Statheropoulos
H.
and
Kyriakou
S. A.
, “
Quantitative Thermogravimetric-Mass Spectrometric Analysis for Monitoring the Effects of Fire Retardants on Cellulose Pyrolysis
,”
Analytica Chimica Acta
409
, nos. 
1–2
(
2000
):
203
214
, https://doi.org/10.1016/S0003-2670(99)00859-4
36.
García
M.
,
Hidalgo
J.
,
Garmendia
I.
, and
García-Jaca
J.
, “
Wood-Plastics Composites with Better Fire Retardancy and Durability Performance
,”
Composites Part A: Applied Science and Manufacturing
40
, no. 
11
(
2009
):
1772
1776
, https://doi.org/10.1016/j.compositesa.2009.08.010
37.
Li
B.
and
He
J.
, “
Investigation of Mechanical Property, Flame Retardancy and Thermal Degradation of LLDPE–Wood-Fibre Composites
,”
Polymer Degradation and Stability
83
, no. 
2
(
2004
):
241
246
, https://doi.org/10.1016/S0141-3910(03)00268-4
38.
Baysal
E.
,
Yalinkilic
M. K.
,
Altinok
M.
,
Sonmez
A.
,
Peker
H.
, and
Colak
M.
, “
Some Physical, Biological, Mechanical, and Fire Properties of Wood Polymer Composite (WPC) Pretreated with Boric Acid and Borax Mixture
,”
Construction and Building Materials
21
, no. 
9
(
2007
):
1879
1885
, https://doi.org/10.1016/j.conbuildmat.2006.05.026
39.
Abdullah
N. M.
and
Ahmed
I.
, “
Fire-Retardant Polyester Composites from Recycled Polyethylene Terephthalate (PET) Wastes Reinforced with Coconut Fibre
,”
Sains Malaysiana
42
, no. 
6
(
2013
):
811
818
.
40.
Dvir
H.
,
Gottlieb
M.
,
Daren
S.
, and
Tartakovsky
E.
, “
Optimization of a Flame-Retarded Polypropylene Composite
,”
Composites Science and Technology
63
, no. 
13
(
2003
):
1865
1875
, https://doi.org/10.1016/S0266-3538(03)00170-2
41.
Xie
Y.
,
Hill
C. A. S.
,
Xiao
Z.
,
Militz
H.
, and
Mai
C.
, “
Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review
,”
Composites Part A: Applied Science and Manufacturing
41
, no. 
7
(
2010
):
806
819
, https://doi.org/10.1016/j.compositesa.2010.03.005
42.
Fonseca
V. M.
,
Fernandes
V. J.
 Jr.
,
Araujo
A. S.
,
Carvalho
L. H.
, and
Souza
A. G.
, “
Effect of Halogenated Flame-Retardant Additives in The Pyrolysis and Thermal Degradation of Polyester/Sisal Composites
,”
Journal of Thermal Analysis and Calorimetry
79
, no. 
2
(
2005
):
429
433
, https://doi.org/10.1007/s10973-005-0079-x
43.
Hapuarachchi
T. D.
,
Ren
G.
,
Fan
M.
,
Hogg
P. J.
, and
Peijs
T.
, “
Fire Retardancy of Natural Fibre Reinforced Sheet Moulding Compound
,”
Applied Composite Materials
14
, no. 
4
(
2007
):
251
264
, https://doi.org/10.1007/s10443-007-9044-0
44.
Hakkarainen
T.
and
Kokkala
M.
, “
Application of a One-Dimensional Thermal Flame Spread Model on Predicting the Rate of Heat Release in the SBI Test
,”
Fire and Materials
25
, no. 
2
(
2001
):
61
70
, https://doi.org/10.1002/fam.760
45.
Mark
H. F.
,
Atlas
S. M.
,
Shalaby
S. W.
, and
Pearce
E. M.
, “
Combustion of Polymers and Its Retardation
,” in
Flame-Retardant Polymeric Materials
, 1st ed., eds.
Lewin
M.
,
Atlas
S. M.
, and
Pearce
E. M.
(
New York
:
Plenum Press
,
1975
),
1
17
.
46.
Khalili
P.
,
Tshai
K. Y.
,
Kong
I.
,
Lee
J. H.
, and
Mostafa
F. A.
, “
The Synergistic Effect of Flame Retardants on Flammability, Thermal and Mechanical Properties of Natural Fiber Reinforced Epoxy Composite
,”
Key Engineering Materials
701
(July
2016
):
281
285
, https://doi.org/10.4028/www.scientific.net/KEM.701.281
47.
Khalili
P.
,
Tshai
K. Y.
, and
Kong
I.
, “
Natural Fiber Reinforced Expandable Graphite Filled Composites: Evaluation of the Flame Retardancy, Thermal and Mechanical Performances
,”
Composites Part A: Applied Science and Manufacturing
100
(May
2017
):
194
205
, https://doi.org/10.1016/j.compositesa.2017.05.015
48.
Wang
C.-Q.
,
Ge
F.-Y.
,
Sun
J.
, and
Cai
Z.-S.
, “
Effects of Expandable Graphite and Dimethyl Methylphosphonate on Mechanical, Thermal, and Flame-Retardant Properties of Flexible Polyurethane Foams
,”
Journal of Applied Polymer Science
130
, no. 
2
(
2013
):
916
926
, https://doi.org/10.1002/app.39252
49.
Meng
X.-Y.
,
Ye
L.
,
Zhang
X.-G.
,
Tang
P.-M.
,
Tang
J.-H.
,
Ji
X.
, and
Li
Z.-M.
, “
Effects of Expandable Graphite and Ammonium Polyphosphate on the Flame-Retardant and Mechanical Properties of Rigid Polyurethane Foams
,”
Journal of Applied Polymer Science
114
, no. 
2
(
2009
):
853
863
, https://doi.org/10.1002/app.30485
50.
Helwig
M.
and
Paukszta
D.
, “
Flammability of Composites Based on Polypropylene and Flax Fibers
,”
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals
354
, no. 
1
(
2006
):
373
380
, https://doi.org/10.1080/10587250008023629
51.
Borysiak
S.
,
Paukszta
D.
, and
Helwig
M.
, “
Flammability of Wood-Polypropylene Composites
,”
Polymer Degradation and Stability
91
, no. 
12
(
2006
):
3339
3343
, https://doi.org/10.1016/j.polymdegradstab.2006.06.002
52.
Manfredi
L. B.
,
Rodríguez
E. S.
,
Wladyka-Przybylak
M.
, and
Vázquez
A.
, “
Thermal Degradation and Fire Resistance of Unsaturated Polyester, Modified Acrylic Resins and Their Composites with Natural Fibres
,”
Polymer Degradation and Stability
91
, no. 
2
(
2006
):
255
261
, https://doi.org/10.1016/j.polymdegradstab.2005.05.003
53.
Gao
H.
,
Hu
S.
,
Han
H.
, and
Zhang
J.
, “
Effect of Different Metallic Hydroxides on Flame-Retardant Properties of Low Density Polyethylene/Melamine Polyphosphate/Starch Composites
,”
Journal of Applied Polymer Science
122
, no. 
5
(
2011
):
3263
3269
, https://doi.org/10.1002/app.34398
54.
Nie
S.
,
Song
L.
,
Guo
Y.
,
Wu
K.
,
Xing
W.
,
Lu
H.
, and
Hu
Y.
, “
Intumescent Flame Retardation of Starch Containing Polypropylene Semibiocomposites: Flame Retardancy and Thermal Degradation
,”
Industrial & Engineering Chemical Research
48
, no. 
24
(
2009
):
10751
10758
, https://doi.org/10.1021/ie9012198
55.
Wu
K.
,
Hu
Y.
,
Song
L.
,
Lu
H.
, and
Wang
Z.
, “
Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Starch-Based Biodegradable Composites
,”
Industrial & Engineering Chemical Research
48
, no. 
6
(
2009
):
3150
3157
, https://doi.org/10.1021/ie801230h
56.
Matkó
S.
,
Toldy
A.
,
Keszei
S.
,
Anna
P.
,
Bertalan
G.
, and
Marosi
G.
, “
Flame Retardancy of Biodegradable Polymers and Biocomposites
,”
Polymer Degradation and Stability
88
, no. 
1
(
2005
):
138
145
, https://doi.org/10.1016/j.polymdegradstab.2004.02.023
57.
Bocz
K.
,
Szolnoki
B.
,
Marosi
A.
,
Tábi
T.
,
Wladyka-Przybylak
M.
, and
Marosi
G.
, “
Flax Fibre Reinforced PLA/TPS Biocomposites Flame Retarded with Multifunctional Additive System
,”
Polymer Degradation and Stability
106
(August
2014
):
63
73
, https://doi.org/10.1016/j.polymdegradstab.2013.10.025
58.
Shumao
L.
,
Jie
R.
,
Hua
Y.
,
Tao
Y.
, and
Weizhong
Y.
, “
Influence of Ammonium Polyphosphate on the Flame Retardancy and Mechanical Properties of Ramie Fiber-Reinforced Poly(Lactic Acid) Biocomposites
,”
Polymer International
59
, no. 
2
(
2010
):
242
248
.
59.
Wu
Z.
,
Wei
C. Y.
,
Cui
Y. Z.
,
Lv
L. H.
, and
Xiao
W.
, “
Study of Flame-Retardant Cotton Stalk Bast Fibers Reinforced Polylactic Acid Composites
,”
Advanced Materials Research
583
(October
2012
):
228
231
, https://doi.org/10.4028/www.scientific.net/AMR.583.228
60.
Cayla
A.
,
Rault
F.
,
Giraud
S.
,
Salaün
F.
,
Fierro
V.
, and
Celzard
A.
, “
PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile
,”
Polymers
8
, no. 
9
(
2016
): 331, https://doi.org/10.3390/polym8090331
61.
Jang
J. Y.
,
Jeong
T. K.
,
Oh
H. J.
,
Youn
J. R.
, and
Song
Y. S.
, “
Thermal Stability and Flammability of Coconut Fiber Reinforced Poly(Lactic Acid) Composites
,”
Composites Part B: Engineering
43
, no. 
5
(
2012
):
2434
2438
, https://doi.org/10.1016/j.compositesb.2011.11.003
62.
Hapuarachchi
T. D.
and
Peijs
T.
, “
Multiwalled Carbon Nanotubes and Sepiolite Nanoclays as Flame Retardants for Polylactide and Its Natural Fibre Reinforced Composites
,”
Composites Part A: Applied Science and Manufacturing
41
, no. 
8
(
2010
):
954
963
, https://doi.org/10.1016/j.compositesa.2010.03.004
63.
Isitman
N. A.
,
Dogan
M.
,
Bayramli
E.
, and
Kaynak
C.
, “
The Role of Nanoparticle Geometry in Flame Retardancy of Polylactide Nanocomposites Containing Aluminium Phosphinate
,”
Polymer Degradation and Stability
97
, no. 
8
(
2012
):
1285
1296
, https://doi.org/10.1016/j.polymdegradstab.2012.05.028
64.
Hornsby
P. R.
, “
The Application of Fire-Retardant Fillers for Use in Textile Barrier Materials
,” in
Multifunctional Barriers for Flexible Structure: Textile, Leather and Paper
97, eds.
Duquesne
S.
,
Magniez
C.
, and
Camino
G.
(
Berlin
:
Springer
,
2007
),
3
22
.
65.
Shen
K. K.
, “
Boron-Based Flame Retardants in Non-Halogen-Based Polymers
,” in
Non-Halogenated Flame Retardant Handbook
, eds.
Morgan
A. B.
and
Wilkie
C. A.
(
Hoboken, NJ
:
John Wiley & Sons, Inc.
,
2014
),
201
241
.
66.
Pritchard
G.
, ed.,
Plastics Additives: An A-Z Reference
(
Dordrecht, the Netherlands
:
Springer Netherlands
,
1998
).
67.
Demir
H.
,
Arkış
E.
,
Balköse
D.
, and
Ülkü
S.
, “
Synergistic Effect of Natural Zeolites on Flame Retardant Additives
,”
Polymer Degradation and Stability
89
, no. 
3
(
2005
):
478
483
, https://doi.org/10.1016/j.polymdegradstab.2005.01.028
68.
Mngomezulu
M. E.
,
John
M. J.
,
Jacobs
V.
, and
Luyt
A. S.
, “
Review on Flammability of Biofibres and Biocomposites
,”
Carbohydrate Polymers
111
(October
2014
):
149
182
, https://doi.org/10.1016/j.carbpol.2014.03.071
69.
Xu
Z.-S.
,
Yan
L.
, and
Chen
L.
, “
Synergistic Flame Retardant Effects between Aluminum Hydroxide and Halogen-Free Flame Retardants in High Density Polyethylene Composites
,”
Procedia Engineering 135
(December
2016
):
631
635
, https://doi.org/10.1016/j.proeng.2016.01.130
70.
McNeill
I. C.
and
Leiper
H. A.
, “
Degradation Studies of Some Polyesters and Polycarbonates—2. Polylactide: Degradation under Isothermal Conditions, Thermal Degradation Mechanism and Photolysis of the Polymer
,”
Polymer Degradation and Stability
11
, no. 
4
(
1985
):
309
326
, https://doi.org/10.1016/0141-3910(85)90035-7
71.
Kopinke
F. D.
,
Remmler
M.
,
Mackenzie
K.
,
Möder
M.
, and
Wachsen
O.
, “
Thermal Decomposition of Biodegradable Polyesters—II. Poly(Lactic Acid)
,”
Polymer Degradation and Stability
53
, no. 
3
(
1996
):
329
342
, https://doi.org/10.1016/0141-3910(96)00102-4
72.
Wang
J.
,
Ren
Q.
,
Zheng
W.
, and
Zhai
W.
, “
Improved Flame-Retardant Properties of Poly(Lactic Acid) Foams Using Starch as a Natural Charring Agent
,”
Industrial & Engineering Chemical Research
53
, no. 
4
(
2014
):
1422
1430
, https://doi.org/10.1021/ie403041h
73.
Chapple
S.
and
Anandjiwala
R.
, “
Flammability of Natural Fiber-Reinforced Composites and Strategies for Fire Retardancy: A Review
,”
Journal of Thermoplastic Composite Materials
23
, no. 
6
(
2009
):
871
893
, https://doi.org/10.1177/0892705709356338
74.
LeVan
S. L.
and
Winandy
J. E.
, “
Effects of Fire Retardant Treatments on Wood Strength: A Review
,”
Wood and Fiber Science
22
, no. 
1
(
1990
):
113
131
.
75.
Lewin
M.
and
Goldstein
I. S.
, eds.,
Wood Structure and Composition
(
New York
:
CRC Press
,
1991
).
76.
Ferdous
D.
,
Dalai
A. K.
,
Bej
S. K.
, and
Thring
R. W.
, “
Pyrolysis of Lignins: Experimental and Kinetics Studies
,”
Energy and Fuels
16
, no. 
6
(
2002
):
1405
1412
, https://doi.org/10.1021/ef0200323
77.
Kozlowski
R.
and
Wladyka-Przybylak
M.
, “
Uses of Natural Fiber Reinforced Plastics
,” in
Natural Fibers, Plastics and Composites
, eds.
Wallenberger
F. T.
and
Weston
N. E.
(
Boston
:
Springer
,
2004
),
249
274
.
78.
Bogoeva-Gaceva
G.
,
Avella
M.
,
Malinconico
M.
,
Buzarovska
A.
,
Grozdanov
A.
,
Gentile
G.
, and
Errico
M. E.
, “
Natural Fiber Eco-Composites
,”
Polymer Composites
28
, no. 
1
(
2007
):
98
107
, https://doi.org/10.1002/pc.20270
79.
Curveloa
A. A. S.
,
de Carvalhoa
A. J. F.
, and
Agnelli
J. A. M.
, “
Thermoplastic Starch–Cellulosic Fibers Composites: Preliminary Results
,”
Carbohydrate Polymers
45
, no. 
2
(
2001
):
183
188
, https://doi.org/10.1016/S0144-8617(00)00314-3
80.
Chi
H.
,
Xu
K.
,
Wu
X.
,
Chen
Q.
,
Xue
D.
,
Song
C.
,
Zhang
W.
, and
Wang
P.
, “
Effect of Acetylation Properties of Corn Starch
,”
Food Chemistry
106
, no. 
3
(
2008
):
923
928
, https://doi.org/10.1016/j.foodchem.2007.07.002
81.
Rout
J.
,
Misra
M.
,
Tripathy
S. S.
,
Nayak
S. K.
, and
Mohanty
A. K.
, “
The Influence of Fibre Treatment on the Performance of Coir-Polyester Composites
,”
Composites Science and Technology
61
, no. 
9
(
2001
):
1303
1310
, https://doi.org/10.1016/S0266-3538(01)00021-5
82.
Manias
E.
,
Touny
A.
,
Wu
L.
,
Strawhecker
K.
,
Lu
B.
, and
Chung
T. C.
, “
Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties
,”
Chemistry of Materials
13
, no. 
10
(
2001
):
3516
3523
, https://doi.org/10.1021/cm0110627
This content is only available via PDF.
You do not currently have access to this content.