Abstract

Soil hydraulic conductivity is a mandatory input for determining water and solute transport through soils. There are several well-established infiltrometers and permeameters for measuring in situ hydraulic conductivity. Infiltrometers measure hydraulic conductivity based on water entry into an unsaturated soil at the soil-atmosphere boundary, whereas permeameters measure the flow of water from one point to another within the soil mass. This difference in measurement philosophy, along with the methods of analysis involved in the measurement, may result in varying estimates of in situ hydraulic conductivity. This study performs an evaluation among three infiltrometers (double ring infiltrometer [DRI] and two disc infiltrometers) and two permeameters (Guelph permeameter [GP] and laboratory permeameter) for measuring hydraulic conductivity. The primary objective of this study is to appraise the variability in the measurement of in situ hydraulic conductivity for identical field conditions using different infiltrometers and permeameters. The study indicated that all the permeameters and infiltrometers exhibited reasonably good repeatability in measurements. Unlike infiltrometers, the hydraulic conductivity determined from permeameters was found to exhibit similar values for two different seasons. Infiltrometers were found to be highly sensitive to alteration in the surface pore structure due to the soil-atmosphere interaction. The statistical evaluation indicated a negative bias of disc infiltrometers when compared with DRI, whereas the comparison of disc infiltrometers has shown a bias close to zero. The results of the GP closely compared with laboratory permeameter. Both the disc infiltrometers exhibited a negative bias and weak correlation with GP measurements. In the absence of parity between infiltrometer and permeameter, the former may be a better choice for including the effect of soil surface alteration on hydrological modeling, whereas the latter can be handy for modeling water redistribution within the soil mass.

References

1.
Hillel
D.
,
Environmental Soil Physics
(
Cambridge, MA
:
Academic Press
,
1998
).
2.
Mishra
S. K.
,
Tyagi
J. V.
, and
Singh
V. P.
, “
Comparison of Infiltration Models
,”
Hydrological Processes
17
, no. 
13
(August
2003
):
2629
2652
, https://doi.org/10.1002/hyp.1257
3.
Jiang
G.
,
Noonan
M. J.
,
Buchan
G. D.
, and
Smith
N.
, “
Transport and Deposition of Bacillus subtilis through an Intact Soil Column
,”
Australian Journal of Soil Research
43
, no. 
6
(September
2005
):
695
703
, https://doi.org/10.1071/SR04140
4.
Chahinian
N.
,
Moussa
R.
,
Andrieux
P.
, and
Voltz
M.
, “
Accounting for Temporal Variation in Soil Hydrological Properties when Simulating Surface Runoff on Tilled Plots
,”
Journal of Hydrology
326
, nos.
1–4
(July
2006
):
135
152
, https://doi.org/10.1016/j.jhydrol.2005.10.038
5.
Zhou
S.-M.
,
Warrington
D. N.
,
Lei
T.-W.
,
Lei
Q.-X.
, and
Zhang
M.-L.
, “
Modified CN Method for Small Watershed Infiltration Simulation
,”
Journal of Hydrologic Engineering
20
, no. 
9
(September
2015
): 04014095, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001125
6.
Pitt
R.
,
Chen
S.-E.
,
Clark
S. E.
,
Swenson
J.
, and
Ong
C. K.
, “
Compaction’s Impacts on Urban Storm-Water Infiltration
,”
Journal of Irrigation and Drainage Engineering
134
, no. 
5
(October
2008
):
652
658
, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(652)
7.
Bean
E. Z.
,
Hunt
W. F.
, and
Bidelspach
D. A.
, “
Field Survey of Permeable Pavement Surface Infiltration Rates
,”
Journal of Irrigation and Drainage Engineering
133
, no. 
3
(June
2007
):
249
255
, https://doi.org/10.1061/(ASCE)0733-9437(2007)133:3(249)
8.
Lee
R. S.
,
Welker
A. L.
, and
Traver
R. G.
, “
Modeling Soil Matrix Hydraulic Properties for Variably-Saturated Hydrologic Analysis
,”
Journal of Sustainable Water in the Built Environment
2
, no. 
2
(May
2016
): 04015011, https://doi.org/10.1061/JSWBAY.0000808
9.
Webb
B. W.
,
Clack
P. D.
, and
Walling
D. E.
, “
Water–Air Temperature Relationships in a Devon River System and the Role of Flow
,”
Hydrological Processes
17
, no. 
15
(October
2003
):
3069
3084
, https://doi.org/10.1002/hyp.1280
10.
Assouline
S.
, “
Infiltration into Soils: Conceptual Approaches and Solutions
,”
Water Resources Research
49
, no. 
4
(April
2013
):
1755
1772
, https://doi.org/10.1002/wrcr.20155
11.
Richards
L. A.
, “
Report on the Subcommittee on Permeability and Infiltration, Committee on Terminology
,”
Soil Science Society of America Journal
16
, no. 
1
(January
1952
):
85
88
, https://doi.org/10.2136/sssaj1952.03615995001600010025x
12.
Verbist
K.
,
Torfs
S.
,
Cornelis
W. M.
,
Oyarzún
R.
,
Soto
G.
, and
Gabriels
D.
, “
Comparison of Single- and Double-Ring Infiltrometer Methods on Stony Soils
,”
Vadose Zone Journal
9
, no. 
2
(May
2010
):
462
475
, https://doi.org/10.2136/vzj2009.0058
13.
Bouwer
H.
, “
Intake Rate: Cylinder Infiltrometer
,” in
Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods
, ed.
Klute
A.
(
Madison, WI
:
Soil Science Society of America, American Society of Agronomy
,
1986
):
825
844
.
14.
Angulo-Jaramillo
R.
,
Vandervaere
J.-P.
,
Roulier
S.
,
Thony
J.-L.
,
Gaudet
J.-P.
, and
Vauclin
M.
, “
Field Measurement of Soil Surface Hydraulic Properties by Disc and Ring Infiltrometers: A Review and Recent Developments
,”
Soil and Tillage Research
55
, nos.
1–2
(May
2000
):
1
29
, https://doi.org/10.1016/S0167-1987(00)00098-2
15.
Bodhinayake
W.
,
Si
B. C.
, and
Noborio
K.
, “
Determination of Hydraulic Properties in Sloping Landscapes from Tension and Double-Ring Infiltrometers
,”
Vadose Zone Journal
3
, no. 
3
(August
2004
):
964
970
, https://doi.org/10.2136/vzj2004.0964
16.
Khodaverdiloo
H.
,
Cheraghabdal
H. K.
,
Bagarello
V.
,
Iovino
M.
,
Asgarzadeh
H.
, and
Dashtaki
S. G.
, “
Ring Diameter Effects on Determination of Field-Saturated Hydraulic Conductivity of Different Loam Soils
,”
Geoderma
303
, (October
2017
):
60
69
, https://doi.org/10.1016/j.geoderma.2017.04.031
17.
Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer
, ASTM D3385-18 (
West Conshohocken, PA
:
ASTM International
, approved March 1,
2018
). https://doi.org/10.1520/D3385-18
18.
Elrick
D. E.
,
Parkin
G. W.
,
Reynolds
W. D.
, and
Fallow
D. J.
, “
Analysis of Early-Time and Steady State Single-Ring Infiltration under Falling Head Conditions
,”
Water Resources Research
31
, no. 
8
(August
1995
):
1883
1893
, https://doi.org/10.1029/95WR01139
19.
Angulo-Jaramillo
R.
,
Elrick
D.
,
Parlange
J. Y.
,
Gerard-Marchant
P.
, and
Haverkamp
R.
, “
Analysis of Short-Time Single-Ring Infiltration under Falling-Head Conditions with Gravitational Effects
,” in
AGU Hydrology Days
(
Fort Collins, CO
:
Colorado State University
,
2003
),
16
23
.
20.
Warrick
A. W.
, “
Models for Disk Infiltrometers
,”
Water Resources Research
28
, no. 
5
(May
1992
):
1319
1327
, https://doi.org/10.1029/92WR00149
21.
Vandervaere
J.-P.
,
Vauclin
M.
, and
Elrick
D. E.
, “
Transient Flow from Tension Infiltrometers I. The Two-Parameter Equation
,”
Soil Science Society of America Journal
64
, no. 
4
(July
2000
):
1263
1272
, https://doi.org/10.2136/sssaj2000.6441263x
22.
Latorre
B.
,
Moret-Fernández
D.
, and
Peña
C.
, “
Estimate of Soil Hydraulic Properties from Disc Infiltrometer Three-Dimensional Infiltration Curve: Theoretical Analysis and Field Applicability
,”
Procedia Environmental Sciences
19
, (December
2013
):
580
589
, https://doi.org/10.1016/j.proenv.2013.06.066
23.
Latorre
B.
,
Peña
C.
,
Lassabatere
L.
,
Angulo-Jaramillo
R.
, and
Moret-Fernández
D.
, “
Estimate of Soil Hydraulic Properties from Disc Infiltrometer Three-Dimensional Infiltration Curve. Numerical Analysis and Field Application
,”
Journal of Hydrology
527
, (August
2015
):
1
12
, https://doi.org/10.1016/j.jhydrol.2015.04.015
24.
Moret-Fernández
D.
and
González-Cebollada
C.
, “
New Method for Monitoring Soil Water Infiltration Rates Applied to a Disc Infiltrometer
,”
Journal of Hydrology
379
, nos.
3–4
(December
2009
):
315
322
, https://doi.org/10.1016/j.jhydrol.2009.10.017
25.
Bordoloi
S.
,
Hussain
R.
,
Garg
A.
,
Sreedeep
S.
, and
Zhou
W.-H.
, “
Infiltration Characteristics of Natural Fiber Reinforced Soil
,”
Transportation Geotechnics
12
, (September
2017
):
37
44
, https://doi.org/10.1016/j.trgeo.2017.08.007
26.
Gadi
V. K.
,
Tang
Y.-R.
,
Das
A.
,
Monga
C.
,
Garg
A.
,
Berretta
C.
, and
Sahoo
L.
, “
Spatial and Temporal Variation of Hydraulic Conductivity and Vegetation Growth in Green Infrastructures Using Infiltrometer and Visual Technique
,”
Catena
155
, (August
2017
):
20
29
, https://doi.org/10.1016/j.catena.2017.02.024
27.
Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter
, ASTM D5856-15 (
West Conshohocken, PA
:
ASTM International
, approved June 1,
2015
). https://doi.org/10.1520/D5856-15
28.
Morbidelli
R.
,
Saltalippi
C.
,
Flammini
A.
,
Cifrodelli
M.
,
Picciafuoco
T.
,
Corradini
C.
, and
Govindaraju
R. S.
, “
In Situ Measurements of Soil Saturated Hydraulic Conductivity: Assessment of Reliability through Rainfall–Runoff Experiments
,”
Hydrological Processes
31
, no. 
17
(August
2017
):
3084
3094
, https://doi.org/10.1002/hyp.11247
29.
Nestingen
R.
,
Asleson
B. C.
,
Gulliver
J. S.
,
Hozalski
R. M.
, and
Nieber
J. L.
, “
Laboratory Comparison of Field Infiltrometers
,”
Journal of Sustainable Water in the Built Environment
4
, no. 
3
(August
2018
): 04018005, https://doi.org/10.1061/JSWBAY.0000857
30.
Ghosh
B.
and
Pekkat
S.
, “
A Critical Evaluation of Measurement Induced Variability in Infiltration Characteristics for a River Sub-Catchment
,”
Measurement
132
, (January
2019
):
47
59
, https://doi.org/10.1016/j.measurement.2018.09.018
31.
Reynolds
W. D.
,
Elrick
D. E.
, and
Youngs
E. G.
, “
Single Ring and Double- or Concentric-Ring Infiltrometers
,” in
Methods of Soil Analysis
, eds.
Dane
J. H.
and
Topp
G. C.
(
Madison, WI
:
Soil Science Society of America
,
2002
):
821
826
.
32.
Angulo-Jaramillo
R.
,
Bagarello
V.
,
Iovino
M.
, and
Lassabatere
L.
,
Infiltration Measurements for Soil Hydraulic Characterization
(
Cham, Switzerland
:
Springer Nature
,
2016
).
33.
Smettem
K. R. J.
,
Parlange
J. Y.
,
Ross
P. J.
, and
Haverkamp
R.
, “
Three-Dimensional Analysis of Infiltration from the Disk Infiltrometer: 1. A Capillary-Based Theory
,”
Water Resources Research
30
, no. 
11
(November
1994
):
2925
2929
, https://doi.org/10.1029/94WR01787
34.
Luna-Saez
D.
,
Sanchez-Reyes
C.
, and
Munoz-Pardo
J.
, “
Methods for Measuring Field-Saturated Hydraulic Conductivity
,”
Ingeniería hidráulica en México
20
, no. 
2
(April
2005
):
95
107
.
35.
Ankeny
M. D.
,
Ahmed
M.
,
Kaspar
T. C.
, and
Horton
R.
, “
Simple Field Method for Determining Unsaturated Hydraulic Conductivity
,”
Soil Science Society of America Journal
55
, (March–April
1991
):
467
470
, https://doi.org/10.2136/sssaj1991.03615995005500020028x
36.
Logsdon
S. D.
and
Jaynes
D. B.
, “
Methodology for Determining Hydraulic Conductivity with Tension Infiltrometers
,”
Soil Science Society of America Journal
57
, no. 
6
(November
1993
):
1426
1431
, https://doi.org/10.2136/sssaj1993.03615995005700060005x
37.
Reynolds
W. D.
and
Elrick
D. E.
, “
In Situ Measurement of Field-Saturated Hydraulic Conductivity, Sorptivity, and the α-Parameter Using the Guelph Permeameter
,”
Soil Science
140
, no. 
4
(October
1985
):
292
302
, https://doi.org/10.1097/00010694-198510000-00008
38.
Salverda
A. P.
and
Dane
J. H.
, “
An Examination of the Guelph Permeameter for Measuring the Soil’s Hydraulic Properties
,”
Geoderma
57
, no. 
4
(June
1993
):
405
421
, https://doi.org/10.1016/0016-7061(93)90052-M
39.
Hayashi
M.
and
Quinton
W. L.
, “
A Constant-Head Well Permeameter Method for Measuring Field-Saturated Hydraulic Conductivity above an Impermeable Layer
,”
Canadian Journal of Soil Science
84
, no. 
3
(August
2004
):
255
264
, https://doi.org/10.4141/S03-064
40.
Elrick
D. E.
and
Reynolds
W. D.
, “
Methods for Analyzing Constant-Head Well Permeameter Data
,”
Soil Science Society of America Journal
56
, no. 
1
(January
1992
):
320
323
, https://doi.org/10.2136/sssaj1992.03615995005600010052x
41.
Reynolds
W. D.
,
Elrick
D. E.
, and
Clothier
B. E.
, “
The Constant Head Well Permeameter: Effect of Unsaturated Flow
,”
Soil Science
139
, no. 
2
(February
1985
):
172
180
, https://doi.org/10.1097/00010694-198502000-00011
42.
Reynolds
W. D.
and
Elrick
D. E.
, “
A Method for Simultaneous In Situ Measurement in the Vadose Zone of Field‐Saturated Hydraulic Conductivity, Sorptivity and the Conductivity‐Pressure Head Relationship
,”
Groundwater Monitoring & Remediation
6
, no. 
1
(March
1986
):
84
95
, https://doi.org/10.1111/j.1745-6592.1986.tb01229.x
43.
Elrick
D. E.
and
Reynolds
W. D.
, “
An Analysis of the Percolation Test Based on Three-Dimensional Saturated-Unsaturated Flow from a Cylindrical Test Hole
,”
Soil Science
142
, no. 
5
(November
1986
):
308
321
, https://doi.org/10.1097/00010694-198611000-00009
44.
Reynolds
W. D.
,
Bowmanb
B. T.
,
Brunkeb
R. R.
,
Drurya
C. F.
, and
Tana
C. S.
, “
Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity
,”
Soil Science Society of America Journal
64
, no. 
2
(March
2000
):
478
484
, https://doi.org/10.2136/sssaj2000.642478x
45.
Perroux
K. M.
and
White
I.
, “
Designs for Disc Permeameters
,”
Soil Science Society of America Journal
52
, (
1988
):
1205
1215
, https://doi.org/10.2136/sssaj1988.03615995005200050001x
46.
Smettem
K. R. J.
and
Clothier
B. E.
, “
Measuring Unsaturated Sorptivity and Hydraulic Conductivity Using Multiple Disc Permeameters
,”
Journal of Soil Science
40
, no. 
3
(September
1989
):
563
568
, https://doi.org/10.1111/j.1365-2389.1989.tb01297.x
47.
Wooding
R. A.
, “
Steady Infiltration from a Shallow Circular Pond
,”
Water Resources Research
4
, no. 
6
(December
1968
):
1259
1273
, https://doi.org/10.1029/WR004i006p01259
48.
Reynolds
W. D.
and
Elrick
D. E.
, “
Determination of Hydraulic Conductivity Using a Tension Infiltrometer
,”
Soil Science Society of America Journal
55
, no. 
3
(May
1991
):
633
639
, https://doi.org/10.2136/sssaj1991.03615995005500030001x
49.
Gardner
W. R.
, “
Some Steady-State Solutions of the Unsaturated Moisture Flow Equation with Application to Evaporation from a Water Table
,”
Soil Science
85
, no. 
4
(April
1958
):
228
232
, https://doi.org/10.1097/00010694-195804000-00006
50.
Naik
A. P.
,
Ghosh
B.
, and
Pekkat
S.
, “
Estimating Soil Hydraulic Properties Using Mini Disk Infiltrometer
,”
ISH Journal of Hydraulic Engineering
25
, no. 
1
(January
2019
):
62
70
, https://doi.org/10.1080/09715010.2018.1471363
51.
Zhang
R.
, “
Determination of Soil Sorptivity and Hydraulic Conductivity from the Disc Infiltrometer
,”
Soil Science Society of America Journal
61
, no. 
4
(July
1997
):
1024
1030
, https://doi.org/10.2136/sssaj1997.03615995006100040005x
52.
Dohnal
M.
,
Dusek
J.
, and
Vogel
T.
, “
Improving Hydraulic Conductivity Estimates from Minidisk Infiltrometer Measurements for Soils with Wide Pore-Size Distributions
,”
Soil Science Society of America Journal
74
, no. 
3
(May
2010
):
804
811
, https://doi.org/10.2136/sssaj2009.0099
53.
M. T. van Genuchten “
A Closed-Form Equation for Predicting the Hydraulic Properties of Unsaturated Soils
,”
Soil Science Society America Journal
44
, no. 
5
(
1980
):
892
898
, https://doi.org/10.2136/sssaj1980.03615995004400050002x
54.
Brazdzionyte
J.
and
Macas
A.
, “
Bland-Altman Analysis as an Alternative Approach for Statistical Evaluation of Agreement between Two Methods for Measuring Hemodynamics during Acute Myocardial Infarction
,”
Medicina (Kaunas)
43
, no. 
3
(
2007
):
208
214
, https://doi.org/10.3390/medicina43030025
55.
Watson
P. F.
and
Petrie
A.
, “
Method Agreement Analysis: A Review of Correct Methodology
,”
Theriogenology
73
, no. 
9
(June
2010
):
1167
1179
, https://doi.org/10.1016/j.theriogenology.2010.01.003
56.
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
, ASTM D854-14 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2014
). https://doi.org/10.1520/D0854-14
57.
Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis
, ASTM D7928-17 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2017
). https://doi.org/10.1520/D7928-17
58.
Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
, ASTM D6938-17a (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2017
). https://doi.org/10.1520/D6938-17A
59.
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
, ASTM D698-12 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2012
). https://doi.org/10.1520/D0698-12E02
60.
Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
, ASTM D2216-19 (
West Conshohocken, PA
:
ASTM International
, approved March 1,
2019
). https://doi.org/10.1520/D2216-19
61.
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
, ASTM D2487-17 (
West Conshohocken, PA
:
ASTM International
, approved December 15,
2017
). https://doi.org/10.1520/D2487-17
62.
Methods of Test for Soils, Part 29: Determination of Dry Density of Soils In-Place by the Core-Cutter Method
, IS 2720-29 (
New Delhi, India
:
Bureau of Indian Standards
, March 1,
1975
).
63.
Bouwer
H.
, “
Planning and Interpreting Soil Permeability Measurements
,”
Journal of the Irrigation and Drainage Division
95
, no. 
3
(
1969
):
391
402
.
64.
Nielsen
D. R.
,
Biggar
J. W.
, and
Erh
K. T.
, “
Spatial Variability of Field-Measured Soil-Water Properties
,”
Hilgardia
42
, no. 
7
(November
1973
):
215
259
, https://doi.org/10.3733/hilg.v42n07p215
65.
Buckland
G. D.
, “
Graph for Estimating Field-Scale Hydraulic Conductivity Sampling Requirements
,”
Canadian Agricultural Engineering
30
, (
1988
):
323
324
.
66.
Higgins
J. P.
,
White
I. R.
, and
Anzures-Cabrera
J.
, “
Meta-Analysis of Skewed Data: Combining Results Reported on Log-Transformed or Raw Scales
,”
Statistics in Medicine
27
, no. 
29
(December
2008
):
6072
6092
, https://doi.org/10.1002/sim.3427
67.
Quan
H.
and
Zhang
J.
, “
Estimate of Standard Deviation for a Log-Transformed Variable Using Arithmetic Means and Standard Deviations
,”
Statistics in Medicine
22
, no. 
17
(September
2003
):
2723
2736
, https://doi.org/10.1002/sim.1525
68.
Köhne
J. M.
,
Júnior
J. A.
,
Köhne
S.
,
Tiemeyer
B.
,
Lennartz
B.
, and
Kruse
J.
, “
Double-Ring and Tension Infiltrometer Measurements of Hydraulic Conductivity and Mobile Soil Regions
,”
Pesquisa Agropecuária Tropical
41
, no. 
3
(July–September
2011
):
336
347
.
69.
Kodesová
R.
,
Simunek
J.
,
Nikodem
A.
, and
Jirku
V.
, “
Estimation of the Dual-Permeability Model Parameters Using Tension Disk Infiltrometer and Guelph Permeameter
,”
Vadoze Zone Journal
9
, no. 
2
(May
2010
):
213
225
, https://doi.org/10.2136/vzj2009.0069
70.
Fredlund
D. G.
and
Rahardjo
H.
,
Soil Mechanics for Unsaturated Soils
(
Hoboken, NJ
:
John Wiley and Sons
,
1993
).
71.
Verbist
K. M. J.
,
Cornelis
W. M.
,
Torfs
S.
, and
Gabriels
D.
, “
Comparing Methods to Determine Hydraulic Conductivities on Stony Soils
,”
Soil Science Society of America Journal
77
, no. 
1
(December
2013
):
25
42
, https://doi.org/10.2136/sssaj2012.0025
This content is only available via PDF.
You do not currently have access to this content.