Abstract

External sulfate attack continues to be a major threat to the long-term durability of concrete structures. Soil or water containing sufficient levels of sulfates can penetrate and chemically react with the hydrated cement compounds, leading to volumetric expansion, and in severe cases, softening of the hardened cementitious paste. While ASTM C1012, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution, is the most widely accepted performance test method used to access the sulfate resistance of cementitious binders, the test requires at least six months and often up to twelve months to perform. This article presents a new accelerated method that places mortar bar specimens under high-vacuum while immersed in sulfate solution to accelerate the penetration and diffusion of sulfates in the specimens and therefore, the degradation and measured linear expansion of the specimens. Expansion, mass change, and visual degradation were assessed over time on mortar specimens immersed in a 5 % and 0.89 % sodium sulfate solution (Na2SO4) and subjected to the vacuum saturation procedure. Expansion results are compared with companion mortar bars that followed the ASTM C1012 method without vacuum saturation. When compared with the current ASTM method, the new test method showed a significant acceleration in the rate of expansion with severe visual deterioration observed two to three times quicker. Visual degradation and measured expansion occurred more rapidly for specimens subjected to the accelerated method and immersed in 5 % Na2SO4; however, mixtures subjected to the accelerated method and immersed in 0.89 % Na2SO4 still showed much faster expansion than companion specimens tested according to ASTM C1012 in 5 % Na2SO4.

References

1.
Guide to Durable Concrete
, ACI 201.2R-16 (
Farmington Hills, MI
:
American Concrete Institute
, approved November 1,
2016
),
30
39
. www.concrete.org
2.
Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution
, ASTM C1012/C1012M-18a (
West Conshohocken, PA
:
ASTM International
, approved February 1,
2018
). https://doi.org/10.1520/C1012_C1012M-18A
3.
Skalny
J.
,
Marchange
J.
, and
Odler
I.
,
Sulfate Attack on Concrete
(
London
:
Spon Press
,
2002
).
4.
Bentz
D. P.
,
Ehlen
M. A.
,
Ferraris
C. F.
, and
Winpigler
J. A.
,
Service Life Prediction Based on Sorptivity for Highway Concrete Exposed to Sulfate Attack and Freeze-Thaw Conditions, FHWA-RD-01-162
, (
McLean, VA
:
Turner Fairbank Highway Research Center
,
2002
).
5.
Ferraris
C.
,
Stutzman
P.
,
Peltz
M.
, and
Winpigler
J.
, “
Developing a More Rapid Test to Assess Sulfate Resistance of Hydraulic Cements
,”
Journal of Research of the National Institute of Standards and Technology
110
, no. 
5
(September/October
2005
):
529
540
, https://doi.org/10.6028/jres.110.080
6.
Dhole
R.
, “
Sulfate Resistance of High-calcium Fly Ash Concrete
” (Ph.D. dissertation,
The University of New Brunswick
,
2008
).
7.
Drimalas
T.
, “
Laboratory and Field Evaluations of External Sulfate Attack in Concrete
” (Ph.D. dissertation,
The University of Texas at Austin
,
2007
).
8.
Neville
A.
,
Properties of Concrete
(
Jarlow
:
Pearson Education Asia Pvt. Ltd.
,
1995
).
9.
Monteiro
P. J. M.
and
Kurtis
K. E.
, “
Time to Failure for Concrete Exposed to Severe Sulfate Attack
,”
Cement and Concrete Research
33
, no. 
7
(July
2003
):
987
993
, https://doi.org/10.1016/S0008-8846(02)01097-9
10.
Stark
D.
,
Durability of Concrete in Sulfate-Rich Soils, Research and Development Bulletin RD097
(
Skokie, IL
:
Portland Cement Association
,
1989
).
11.
Tian
B.
and
Cohen
M. D.
, “
Does Gypsum Formation During Sulfate Attack on Concrete Lead to Expansion?
,”
Cement and Concrete Research
30
, no. 
1
(January
2000
):
117
123
, https://doi.org/10.1016/S0008-8846(99)00211-2
12.
Standard Specification for Portland Cement
, ASTM C150-18 (
West Conshohocken, PA
:
ASTM International
, approved April 1,
2018
). https://doi.org/10.1520/C0150_C0150M-18
13.
Dhole
R.
,
Thomas
M. D. A.
,
Folliard
K. J.
, and
Drimalas
T.
, “
Sulfate Resistance of Mortar Mixtures of High-Calcium Fly Ashes and Other Pozzolans
,”
ACI Materials Journal
108
, no. 
6
(Novemeber/Decemeber
2011
):
159
168
, https://doi.org/10.14359/51683468
14.
Dhole
R.
,
Thomas
M. D. A.
,
Folliard
K. J.
, and
Drimalas
T.
, “
Characterization of Fly Ashes for Sulfate Resistance
,”
ACI Materials Journal
110
, no. 
2
(March/April
2013
):
159
168
, https://doi.org/10.14359/51685530
15.
Shashiprakash
S.
and
Thomas
M. D. A.
, “
Sulfate Resistance of Mortars Containing High-calcium Fly Ashes and Combinations of Highly Reactive Pozzolans and Fly Ash
” (paper presentation, Seventh CANMET/ACI International Conference on Fly Ash,
Silica Fume, Slag, and Natural Pozzolans in Concrete
,
Chennai, India
, July 22–27,
2001
).
16.
Tikalsky
P.
and
Carrasquillo
R. L.
, “
Fly Ash Evaluation and Selection for Use in Sulfate-Resistant Concrete
,”
ACI Materials Journal
90
, no. 
6
(November/December
1993
):
545
551
, https://doi.org/10.14359/4428
17.
Seraj
S.
, “
Evaluating Natural Pozzolans for Use as Alternative Supplementary Cementitious Materials in Concrete
” (Ph.D. dissertation,
The University of Texas at Austin
,
2007
).
18.
Shehata
M. H.
,
Adhikari
G.
, and
Radomski
S.
, “
Long-Term Durability of Blended Cement Against Sulfate Attack
,”
ACI Materials Journal
105
, no. 
6
(November/December
2008
):
594
602
, https://doi.org/10.14359/20201
19.
Khatib
J. M.
and
Wild
S.
, “
Sulphate Resistance of Metakaolin Mortar
,”
Cement and Concrete Research
28
, no. 
1
(January
1998
):
83
92
, https://doi.org/10.1016/S0008-8846(97)00210-X
20.
Khatri
R. P.
,
Sirivivatnanon
V.
, and
Yang
J. L.
, “
Role of Permeability in Sulphate Attack
,”
Cement and Concrete Research
27
, no. 
8
, (August
1997
):
1179
1189
, https://doi.org/10.1016/S0008-8846(97)00119-1
21.
Scherer
G. W.
, “
Crystallization in Pores
,”
Cement and Concrete Research
29
, no. 
8
(August
1999
):
1347
1358
, https://doi.org/10.1016/S0008-8846(99)00002-2
22.
Van Tittelboom
K.
,
De Belie
N.
, and
Hooton
R. D.
, “
Test Methods for Resistance of Concrete to Sulfate Attack – A Critical Review
,” in
Performance of Cement-Based Materials in Aggressive Aqueous Environments
,
Alexander
M.
,
Bertron
A.
, and
De Belie
N.
, eds. (
Dordrecht
:
Springer
,
2013
), 251–288, https://doi.org/10.1007/978-94-007-5413-3_10
23.
Van Tittelboom
K.
and
De
N.
Belie, “
A Critical Review of Test Methods for Evaluating the Resistance of Concrete Against Sulfate Attack
” (paper presentation, Concrete in Aggressive Aqueous Environments, Performance, Testing and Modeling,
Toulouse, France
, June 3–5,
2009
).
24.
Köch
A.
and
Steinegger
H.
, “
A Rapid Test Method for Cements for their Behaviour Under Sulphate Attack
,”
Zement Kalk Gips
7
(
1960
):
317
324
.
25.
Mehta
P.
and
Gjørv
O.
, “
A New Test for Sulfate Resistance of Cements
,”
Journal of Testing and Evaluation
2
, no. 
6
(November
1974
):
510
515
, https://doi.org/10.1520/JTE11684J
26.
Mehta
P.
and
Monteiro
P.
,
Concrete: Microstructure, Properties and Materials
(
New York, NY
:
McGraw-Hill Companies, Inc.
,
2006
).
27.
Brown
P. W.
, “
An Evaluation of the Sulfate Resistance of Cement in a Controlled Environment
,”
Cement and Concrete Research
11
, nos. 
5–6
(September/November
1981
):
719
727
, https://doi.org/10.1016/0008-8846(81)90030-2
28.
Ferraris
C.
,
Stutzman
P.
,
Peltz
M.
, and
Winpigler
J.
, “
Developing a More Rapid Test to Assess Sulfate Resistance of Hydraulic Cements
,”
Journal of Research of the National Institute of Standards and Technology
110
, no. 
5
(September/October
2005
):
529
540
, https://doi.org/10.6028/jres.110.080
29.
Ferraris
C. F.
,
Clifton
J. R.
,
Stutzman
P. E.
, and
Garboczi
E. J.
, “
Mechanisms of Degradation of Portland Cement-Based Systems by Sulfate Attack
,” in
Mechanism of Chemical Degradation of Cement-Based Systems
, eds.
Scrivener
K. L.
and
Young
J. F.
, (
London
:
E & FN Spon
,
1997
),
185
192
.
30.
Huang
Q.
,
Wang
C.
,
Yang
C.
,
Zhou
L.
, and
Yin
J.
, “
Accelerated Sulfate Attack on Mortars using Electrical Pulse
,”
Construction and Building Materials
95
, no. 
1
(October
2015
):
875
881
, https://doi.org/10.1016/j.conbuildmat.2015.07.034
31.
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)
, ASTM C109/C109M-16a (
West Conshohocken, PA
:
ASTM International
, approved March 1,
2018
). https://doi.org/10.1520/C0109_C0109M-16A
32.
Concrete Part 1: Specification, Performance, Production and Conformity
, EN 206-1:2000 E (
Brussels
:
European Committee for Standardization
, approved December 1,
2000
),
15
21
.
33.
Gollop
R. S.
and
Taylor
H. F. W.
, “
Microstructural and Microanalytical Studies of Sulfate Attack. I. Ordinary Portland Cement Paste
,”
Cement and Concrete Research
22
, no. 
6
(November
1992
):
1027
1038
, https://doi.org/10.1016/0008-8846(92)90033-R
34.
Gollop
R. S.
and
Taylor
H. F. W.
, “
Microstructural and Microanalytical Studies of Sulfate Attack. III. Sulfate-Resisting Portland Cement: Reactions with Sodium and Magnesium Sulfate Solutions
,”
Cement and Concrete Research
25
, no. 
7
(October
1995
):
1581
1590
, https://doi.org/10.1016/0008-8846(95)00151-2
35.
Irassar
E. F.
,
Bonavetti
V. L.
and
González
M.
, “
Microstructural Study of Sulfate Attack on Ordinary and Limestone Portland Cements at Ambient Temperature
,”
Cement and Concrete Research
33
, no. 
1
(January
2003
):
31
41
, https://doi.org/10.1016/S0008-8846(02)00914-6
36.
Wang
J. G.
, “
Sulfate Attack on Hardened Cement Paste
,”
Cement and Concrete Research
24
, no. 
4
(January
1994
):
735
742
, https://doi.org/10.1016/0008-8846(94)90199-6
37.
Gospodinov
P. N.
,
Kazandjiev
R. F.
,
Partalin
T. A.
, and
Mironova
M. K.
, “
Diffusion of Sulfate Ions into Cement Stone Regarding Simultaneous Chemical Reaction and Resulting Effects
,”
Cement and Concrete Research
29
, no. 
10
(October
1999
):
1591
1596
, https://doi.org/10.1016/S0008-8846(99)00138-6
38.
Détermination de la Masse Volumique Apparente et de la Porosité Accessible à l’Eau
, Méthodes recommandées pour la mesure des grandeurs associées à la durabilité, Compte-rendu des Journées Techniques, (Toulouse, France: Assocation Française de Rechaerche et d’Essais sur les Matériaux et les Construcion, Decemeber
1997
),
121
124
.
39.
Siad
H.
,
Lachemi
M.
,
Şahmaran
M.
, and
Anwar Hossain
K.
, “
Preconditioning Method for Accelerated Testing of Concrete under Sulfate Attack
,”
ACI Materials Journal
113
, no. 
4
(July/August
2016
):
493
504
, https://doi.org/10.14359/51688705
40.
Scherer
G. W.
, “
Stress from Crystallization of Salt
,”
Cement and Concrete Research
34
, no. 
9
(September
2004
):
1613
1624
, https://doi.org/10.1016/j.cemconres.2003.12.034
This content is only available via PDF.
You do not currently have access to this content.