Abstract

Industrialization and urbanization have led to a rapid increase in hazardous and reactive wastes that need to be disposed safely. Multilayered cover systems (MLCS) are used for such waste disposal to impede contaminant interaction with the subsurface and atmosphere. Based on multiple forensic studies, soil erosion has been identified as a primary stressor of landfill covers that results in cover failure and exposure to contamination. The pinhole test is one of the most commonly adopted index tests to evaluate the erosion rate of soil. The main objective of this technical note is to measure the erosion potential of a soil at nine different compaction states and three runoffs, which correspond to three forms—rainfall-heavy, excessive, and cloudburst—that can result in significant erosion. A total of 729 pinhole tests on 9 different loamy soils were conducted in the current study, and the individual effects of initial moisture content, soil density, and runoff flow rate are discussed. It is observed that compaction of the surface layer for MLCS can be done at wet optimum moisture content with the highest possible soil density to minimize risk of erosion for all loamy soil. Furthermore, fine fractions of soils (percentage finer than 75 μm) was identified as a parameter that can be used to predict the maximum erosion rate of a soil using a simple linear relation.

References

1.
U.S. Energy Information Administration “
Monthly Energy Review
,”
Washington, DC
,
2014
.
2.
U.S. Environmental Protection Agency
Final Covers on Hazardous Waste Landfills and Surface Impoundments, EPA/530-SW-39-047
(
Washington, DC
:
U.S. Environmental Protection Agency
,
1989
).
3.
Asmussen
R. M.
,
Pearce
C. I.
,
Miller
B. W.
,
Lawter
A. R.
,
Neeway
J. J.
,
Lukens
W. W.
,
Bowden
M. E.
, et al., “
Getters for Improved Technetium Containment in Cementitious Waste Forms
,”
Journal of Hazardous Materials
341
(January
2018
):
238
247
, https://doi.org/10.1016/j.jhazmat.2017.07.055
4.
Reddy
K. R.
,
Yargicoglu
E. N.
,
Yue
D.
, and
Yaghoubi
P.
, “
Enhanced Microbial Methane Oxidation in Landfill Cover Soil Amended with Biochar
,”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
9
(September
2014
): 04014047, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001148
5.
Yao
Y.
,
Su
Y.
,
Wu
Y.
,
Liu
W.
, and
He
R.
, “
An Analytical Model for Estimating the Reduction of Methane Emission Through Landfill Cover Soils by Methane Oxidation
,”
Journal of Hazardous Materials
283
(February
2015
):
871
879
, https://doi.org/10.1016/j.jhazmat.2014.10.035
6.
Sadasivam
B. Y.
and
Reddy
K. R.
, “
Adsorption and Transport of Methane in Landfill Cover Soil Amended with Waste-Wood Biochars
,”
Journal of Environmental Management
158
(August
2015
):
11
23
, https://doi.org/10.1016/j.jenvman.2015.04.032
7.
Lo
I. M. C.
,
Mak
R. K. M.
, and
Lee
S. C. H.
, “
Modified Clays for Waste Containment and Pollutant Attenuation
,”
Journal of Environmental Engineering
123
, no. 
1
(January
1997
):
25
32
, https://doi.org/10.1061/(ASCE)0733-9372(1997)123:1(25)
8.
Kayabali
K.
, “
Engineering Aspects of a Novel Landfill Liner Material: Bentonite-Amended Natural Zeolite
,”
Engineering Geology
46
, no. 
2
(May
1997
):
105
114
, https://doi.org/10.1016/S0013-7952(96)00102-0
9.
Müller
W. W.
and
Wöhlecke
A.
, “
Zero Leakage? Landfill Liner and Capping Systems in Germany
,”
Environmental Geotechnics
(October
2017
):
1
9
, https://doi.org/10.1680/jenge.16.00031
10.
Stark
T. D.
, “
Evaluation of a Four-Component Composite Landfill Liner System
,”
Environmental Geotechnics
4
, no. 
4
(August
2017
):
257
273
, https://doi.org/10.1680/jenge.14.00033
11.
Albright
W. H.
,
Benson
C. H.
,
Gee
G. W.
,
Roesler
A. C.
,
Abichou
T.
,
Apiwantragoon
P.
,
Lyles
B. F.
, and
Rock
S. A.
, “
Field Water Balance of Landfill Final Covers
,”
Journal of Environmental Quality
33
, no. 
6
(November/December
2004
):
2317
2332
, https://doi.org/10.2134/jeq2004.2317
12.
Benson
C. H.
,
Sawangsuriya
A.
,
Trzebiatowski
B.
, and
Albright
W. H.
, “
Postconstruction Changes in the Hydraulic Properties of Water Balance Cover Soils
,”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
4
(April
2007
):
349
359
, https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(349)
13.
Moraci
N.
,
Busana
S.
,
Cortellazzo
G.
,
Favaretti
M.
,
Mandaglio
M. C.
, and
Schepis
M.
, “
Design and Construction of a Compacted Clay Liner in the Cover System of a MSW Landfill Using Not Standard Procedures
,”
Canadian Geotechnical Journal
55
, no. 
8
(August
2018
):
1182
1192
, https://doi.org/10.1139/cgj-2017-0371
14.
Rubinos
D. A.
and
Spagnoli
G.
, “
Utilization of Waste Products as Alternative Landfill Liner and Cover Materials–A Critical Review
,”
Critical Reviews in Environmental Science and Technology
48
, no. 
4
(May
2018
):
376
438
, https://doi.org/10.1080/10643389.2018.1461495
15.
Anderson
C. E.
and
Stormont
J. C.
,
Prediction of Long-Term Erosion from Landfill Covers in the Southwest
(
Washington, DC
:
United States Department of Energy
,
1997
):
389
395
.
16.
Zekkos
D.
,
Vlachakis
V. S.
, and
Athanasopoulos
G. A.
, “
The 2010 Xerolakka Landfill Slope Instability
,”
Environmental Geotechnics
1
, no. 
1
(February
2014
):
56
65
, https://doi.org/10.1680/envgeo.13.00003
17.
Huvaj-Sarihan
N.
and
Stark
T. D.
, “
Back-Analyses of Landfill Slope Failures
,” in
Sixth International Conference on Case Histories in Geotechnical Engineering
(
Rolla, MO
:
Missouri University of Science and Technology
,
2008
).
18.
Suter
G. W.
,
Luxmoore
R. J.
, and
Smith
E. D.
, “
Compacted Soil Barriers at Abandoned Landfill Sites are Likely to Fail in the Long Term
,”
Journal of Environmental Quality
22
, no. 
2
(April
1993
):
217
226
, https://doi.org/10.2134/jeq1993.00472425002200020001x
19.
Lavigne
F.
,
Wassmer
P.
,
Gomez
C.
,
Davies
T. A.
,
Hadmoko
D. S.
,
Iskandarsyah
T. Y. W.
,
Gaillard
J. C.
, et al., “
The 21 February 2005, Catastrophic Waste Avalanche at Leuwigajah Dumpsite, Bandung, Indonesia
,”
Geoenvironmental Disasters
1
, no. 
1
(December
2014
):
1
12
, https://doi.org/10.1186/s40677-014-0010-5
20.
Koerner
R. M.
and
Daniel
D. E.
,
Final Covers for Solid Waste Landfills and Abandoned Dumps
(
London
:
Thomas Telford Ltd
.,
1997
).
21.
U.S. Department of Energy
Alternative Landfill Cover, DOE/EM-0558
(
Washington, DC
:
United States Department of Energy
,
2000
):
1
23
.
22.
Bordoloi
S.
,
Hussain
R.
,
Gadi
V. K.
,
Bora
H.
,
Sahoo
L.
,
Karangat
R.
,
Garg
A.
, and
Sreedeep
S.
, “
Monitoring Soil Cracking and Plant Parameters for a Mixed Grass Species
,”
Géotechnique Letters
8
, no. 
1
(March
2018
):
49
55
, https://doi.org/10.1680/jgele.17.00145
23.
Al-Kaisi
M.
,
Soil Erosion: An Agricultural Production Challenge
(
Ames, IA
:
Iowa State University
,
2000
).
24.
Zhang
X.
,
Quine
T. A.
, and
Walling
D. E.
, “
Soil Erosion Rates on Sloping Cultivated Land on the Loess Plateau near Ansai, Shaanxi Province, China: An Investigation Using 137Cs and Rill Measurements
,”
Hydrological Processes
12
, no. 
1
(December
1998
):
171
189
, https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<171::AID-HYP570>3.0.CO;2-L
25.
Lei
T.
,
Pan
Y.
,
Liu
H.
,
Zhan
W.
, and
Yuan
J.
, “
A Run Off-on-Ponding Method and Models for the Transient Infiltration Capability Process of Sloped Soil Surface under Rainfall and Erosion Impacts
,”
Journal of Hydrology
319
, no. 
1–4
(March
2006
):
216
226
, https://doi.org/10.1016/j.jhydrol.2005.06.029
26.
Fang
H.
,
Sun
L.
, and
Tang
Z.
, “
Effects of Rainfall and Slope on Runoff, Soil Erosion and Rill Development: An Experimental Study Using Two Loess Soils
,”
Hydrological Processes
29
, no. 
11
(November
2015
):
2649
2658
, https://doi.org/10.1002/hyp.10392
27.
Morgan
R. P. C.
,
Soil Erosion and Conservation
(
Hoboken, NJ
:
John Wiley & Sons
,
2009
).
28.
Sherard
J. L.
,
Steele
E. F.
,
Decker
R. S.
, and
Dunnigan
L. P.
, “
Pinhole Test for Identifying Dispersive Soils
,”
Journal of the Geotechnical Engineering Division
102
, no. 
1
(
1976
):
69
85
.
29.
Reddi
L. N.
,
Lee
I. M.
, and
Bonala
M. V.
, “
Comparison of Internal and Surface Erosion Using Flow Pump Tests on a Sand-Kaolinite Mixture
,”
Geotechnical Testing Journal
23
, no. 
1
(March
2000
):
116
122
, https://doi.org/10.1520/GTJ11129J
30.
Wan
C. F.
and
Fell
R.
, “
Investigation of Rate of Erosion of Soils in Embankment Dams
,”
Journal of Geotechnical and Geoenvironmental Engineering
130
, no. 
4
(April
2004
):
373
380
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
31.
Bordoloi
S.
,
Yamsani
S. K.
,
Garg
A.
,
Sreedeep
S.
, and
Borah
S.
, “
Study on the Efficacy of Harmful Weed Species Eicchornia Crassipes for Soil Reinforcement
,”
Ecological Engineering
85
(December
2015
):
218
222
, https://doi.org/10.1016/j.ecoleng.2015.09.082
32.
Bordoloi
S.
,
Yamsani
S. K.
,
Garg
A.
, and
Sekharan
S.
, “
Critical Assessment of Infiltration Measurements for Soils with Varying Fine Content Using a Mini Disk Infiltrometer
,”
Journal of Testing and Evaluation
47
, no. 
2
(
2018
), https://doi.org/10.1520/JTE20170328
33.
Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
, ASTM D4647/D4647M-13 (
West Conshohocken, PA
:
ASTM International
,
2013
), https://doi.org/10.1520/D4647_D4647M-13
34.
Nearing
M. A.
,
Foster
G. R.
,
Lane
L. J.
, and
Finkner
S. C.
, “
A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology
,”
Transactions of the ASAE
32
, no. 
5
(
1989
):
1587
1593
, https://doi.org/10.13031/2013.31195
35.
Bordoloi
S.
,
Kashyap
V.
,
Garg
A.
,
Sreedeep
S.
,
Wei
L.
, and
Andriyas
S.
, “
Measurement of Mechanical Characteristics of Fiber from a Novel Invasive Weed: A Comprehensive Comparison with Fibers from Agricultural Crops
,”
Measurement
113
(January
2018
):
62
70
, https://doi.org/10.1016/j.measurement.2017.08.044
36.
Kumar
Y. S.
,
Kumar
S.
,
Sekharan
S.
, and
Ranjan
R. R.
, “
Determination of Soil Erosion Index for Surface Soils of Landfill Covers
,”
Environmental Geotechnics
(September
2017
):
1
8
, https://doi.org/10.1680/jenge.16.00018
37.
Boardman
J.
, “
Soil Erosion Science: Reflections on the Limitations of Current Approaches
,”
CATENA
68
, nos. 
2–3
(December
2006
):
73
86
, https://doi.org/10.1016/j.catena.2006.03.007
38.
Venkatarama-Reddy
B. V.
and
Jagadish
K. S.
, “
The Static Compaction of Soils
,”
Géotechnique
43
, no. 
2
(June
1993
):
337
341
, https://doi.org/10.1680/geot.1993.43.2.337
39.
Haghighi
I.
,
Chevalier
C.
,
Duc
M.
,
Guédon
S.
, and
Reiffsteck
P.
, “
Improvement of Hole Erosion Test and Results on Reference Soils
,”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
2
(February
2013
):
330
339
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000747
40.
Chepil
W. S.
, “
Influence of Moisture on Erodibility of Soil by Wind
,”
Soil Science Society of America Journal
20
, no. 
2
(April
1956
):
288
292
, https://doi.org/10.2136/sssaj1956.03615995002000020033x
41.
Lambe
T. W.
, “
The Engineering Behavior of Compacted Clay
,”
Journal of the Soil Mechanics and Foundations Division
84
, no. 
2
(
1958
):
1
35
.
42.
Grissinger
E. H.
, “
Resistance of Selected Clay Systems to Erosion by Water
,”
Water Resources Research
2
, no. 
1
(March
1966
):
131
138
, https://doi.org/10.1029/WR002i001p00131
43.
Lüthi
M.
, “
A Modified Hole Erosion Test (HET-P) to Study Erosion Characteristics of Soil
” (master’s thesis,
University of British Columbia
,
2011
).
44.
Regazzoni
P.-L.
and
Marot
D.
, “
Investigation of Interface Erosion Rate by Jet Erosion Test and Statistical Analysis
,”
European Journal of Environmental and Civil Engineering
15
, no. 
8
(January
2012
):
1167
1185
, https://doi.org/10.1080/19648189.2011.9714847
This content is only available via PDF.
You do not currently have access to this content.